UnityShader-菲涅尔反射(Fresnel Reflection)

UnityShader-菲涅尔反射(Fresnel Reflection)

菲涅耳公式(或菲涅耳方程),由奥古斯丁·让·菲涅耳导出。用来描述光在不同折射率的介质之间的行为。由公式推导出的光的反射称之为“菲涅尔反射”。菲涅尔公式是光学中的重要公式,用它能解释反射光的强度、折射光的强度、相位与入射光的强度的关系
奥古斯丁·让·菲涅耳

在计算机图形学中的应用

一般运用于水面效果,试想一下你站在湖边,低头看向水里,你会发现近的地方非常清澈见底(反射较少),而看远的地方却倒映着天空(反射较多)。这就是菲尼尔效应

效果

500
这里直接让反射颜色为红色,可以看到远处的更红,而近处的为光照颜色白色
fresnel效果的球体

fresnel+cubemap效果

简化后的公式

由于真实的菲尼尔公式计算量较多。在游戏里往往会用简化版的公式来提升效率达到近似的效果

fresnel = fresnel基础值 + fresnel缩放量*pow( 1 - dot( N, V ), 5 )

Shader实现

Shader "lijia/fresnelTest"
{
    Properties
    {
        _MainTex ("Texture", 2D) = "white" {}
        _fresnelBase("fresnelBase", Range(0, 1)) = 1
        _fresnelScale("fresnelScale", Range(0, 1)) = 1
        _fresnelIndensity("fresnelIndensity", Range(0, 5)) = 5
        _fresnelCol("_fresnelCol", Color) = (1,1,1,1)
    }

    SubShader
    {
        Tags { "RenderType"="Opaque" }
        LOD 100

        Pass
        {
            tags{"lightmode="="forward"}

            CGPROGRAM
            #pragma vertex vert
            #pragma fragment frag

            #include "UnityCG.cginc"
            #include "Lighting.cginc"

            struct appdata
            {
                float4 vertex : POSITION;
                float2 uv : TEXCOORD0;
                float3 normal : NORMAL;
            };

            struct v2f
            {
                float2 uv : TEXCOORD0;
                float4 vertex : SV_POSITION;
                float3 L : TEXCOORD1;
                float3 N : TEXCOORD2;
                float3 V : TEXCOORD3;
            };

            sampler2D _MainTex;
            float4 _MainTex_ST;

            float _fresnelBase;

            float _fresnelScale;

            float _fresnelIndensity;

            float4 _fresnelCol;

            v2f vert (appdata v)
            {
                v2f o;
                o.vertex = UnityObjectToClipPos(v.vertex);
                o.uv = TRANSFORM_TEX(v.uv, _MainTex);
                //将法线转到世界坐标
                o.N = mul(v.normal, (float3x3)unity_WorldToObject);
                //获取世界坐标的光向量
                o.L = WorldSpaceLightDir(v.vertex);
                //获取世界坐标的视角向量
                o.V = WorldSpaceViewDir(v.vertex);
                return o;
            }

            fixed4 frag (v2f i) : SV_Target
            {
                fixed4 col = tex2D(_MainTex, i.uv);

                float3 N = normalize(i.N);
                float3 L = normalize(i.L);
                float3 V = normalize(i.V);

                col.rgb *= saturate(dot(N, L)) * _LightColor0.rgb;
                //菲尼尔公式
                float fresnel = _fresnelBase + _fresnelScale*pow(1 - dot(N, V), _fresnelIndensity);

                col.rgb += lerp(col.rgb, _fresnelCol, fresnel) * _fresnelCol.a;

                return col;
            }

            ENDCG
        }
    }
}
posted @ 2017-12-09 23:39 李嘉的博客 阅读( ...) 评论( ...) 编辑 收藏
惠更斯-菲涅尔衍射是光学中的一个重要现象,通过编写MATLAB代码可以模拟和计算这一现象,以下是对如何编写MATLAB代码实现惠更斯-菲涅尔衍射的简要步骤: 1. 首先,定义需要用到的参数,包括波长λ、入射光束的尺寸、计算区域的尺寸、采样点的数量以及屏幕到计算区域的距离等。 2. 创建一个与计算区域大小相同的二维矩阵来表示入射光的幅度和相位分布。可以根据需要设定入射光的形状和幅度分布。 3. 对计算区域内的每个点,计算其与入射光源的距离。利用惠更斯-菲涅尔衍射公式: U(x,y) = (1 / (j * λ * z)) * exp(j * k * z) * ∬U0(x0, y0) * exp(-j * k * ((x - x0)^2 + (y - y0)^2) / (2 * z)) * dx0 * dy0 其中U(x,y)表示观察点(x,y)上的光场幅度,U0(x0, y0)表示入射光源上的光场幅度,(x0, y0)是计算区域内的采样点,z是入射光源到观察点的距离,λ是波长,k是波数。 4. 将计算得到的光场幅度通过绘图显示出来,可以使用MATLAB的图形绘制函数将结果可视化,例如imshow函数。 5. 可以调整入射光的形状、位置和幅度分布等参数,观察衍射现象的变化,并进行进一步的分析和讨论。 编写MATLAB代码实现惠更斯-菲涅尔衍射需要一定的光学和数值计算的基础知识,了解相关理论和公式,结合MATLAB编程技巧进行实现。这样的代码可以实现对各种入射光条件下的衍射现象进行模拟和计算,从而对光学现象进行研究和分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值