Cancer Cell综述 | 免疫治疗虽好,但谁能真正受益?| 预测标志物全景

👋 欢迎关注我的生信学习专栏~ 如果觉得文章有帮助,别忘了点赞、关注、评论!

在过去十年中,**免疫检查点抑制剂(ICIs)**彻底改变了癌症治疗格局,部分患者实现了前所未有的长期缓解,甚至“功能性治愈”。PD-1、PD-L1、CTLA-4 等抗体药物不断获得适应症扩展,开启了“精准免疫治疗”时代。

然而,一个关键问题始终困扰着临床工作者:

谁才能真正从免疫治疗中获益?我们如何在治疗前预测疗效?

带着这一核心问题,2025 年 Cancer Cell 发表了由 Stephen Wang 和 Timothy Chan 撰写的重磅综述文章:

《Navigating established and emerging biomarkers for immune checkpoint inhibitor therapy》

该文系统梳理了免疫治疗中既有与新兴的疗效预测生物标志物,不仅总结临床标准,也深入机制与多组学数据,提供了完整而清晰的标志物地图。


一、为什么要预测免疫治疗疗效?

尽管免疫治疗疗效显著,但仅有20-40%的患者能够获得持续缓解,部分患者甚至出现加速进展或严重免疫相关副反应。因此,临床上迫切需要:

  • 精准筛选受益患者;
  • 避免无效治疗及不必要毒副反应;
  • 为联合用药和新策略开发提供理论支持。

目前常用的预测指标包括:

  • PD-L1 表达
  • 肿瘤突变负荷(TMB)
  • 微卫星不稳定性(MSI)/错配修复缺陷(dMMR)

但这些标志物在真实世界中的预测效果远低于理想状态,这正是本文综述深入探讨的问题。


二、文章思路概览(详细解析)

本文从“我们现在用什么”到“我们未来可以怎么做”,分三大部分逐步推进:

FDA批准的标志物(左上):PD-L1 表达、TMB、MSI 等;

已研究但尚未批准的肿瘤内在因素(右上):克隆性突变、neoantigen 质量、HLA LOH 等;

免疫微环境因素(左下):TILs 密度、TRM/TPEX状态、TAM极化、CAF结构等;

宿主与外源因素(右下):HLA多样性、微生物组、代谢物、germline eQTL等。


第一部分:已批准标志物的临床价值与局限

核心问题:

目前有哪些标志物已用于临床?预测效果如何?是否可靠?

内容要点:
  • PD-L1 表达评分:

    • TPS(肿瘤细胞PD-L1阳性比例)
    • CPS(肿瘤+免疫细胞阳性比例)
    • 不同癌种/抗体/公司伴随诊断存在巨大差异
  • TMB(Tumor Mutation Burden):

    • 越多突变≠越好,应考虑突变是否具免疫原性
    • 引入 clonal TMB 和 persistent TMB 概念
  • MSI/dMMR:

    • 是FDA批准的组织无关标志物
    • 但 MSI+ 并不总是免疫应答强,需结合TMB与免疫活性理解
小结:

临床确实依赖这些标志物
但预测效力有限,无法解释多数患者差异
作者观点:这些是“必要但不充分”的预测信息


第二部分:机制层面新兴标志物拓展

核心问题:

除了PD-L1、TMB,还有哪些机制性因素影响免疫治疗反应?

内容要点:
  • T细胞功能状态:

    • TPEX、TRM、TTEX 表型预测再激活潜力
    • 功能状态比数量更重要
  • B细胞与TLS(类淋巴结构):

    • 与免疫应答正相关,是新的积极预测信号
  • TAM/CAF 亚群结构性抑制作用:

    • 如LRRC15+ CAF会限制T细胞渗透
  • 转录组/单细胞/表观组学:

    • IFN-γ、TGF-β、WNT、EMT 等 signature
    • 单细胞揭示新亚群(CXCL13+ helper CD4+)
    • 表观重塑可激活病毒模拟通路(STING)
小结:

更加接近机制、具备生物学解释力
多数为观察性发现,缺乏标准验证
作者强调:不能过度解读“亚群”,需因果验证


第三部分:向整合预测模型迈进(未来方向)

核心问题:

如何整合多模态信息,实现系统化预测?

内容要点:

作者提出未来应构建一个“系统级预测框架”,将以下多维信号纳入考量:

模态内容示例
肿瘤基因组TMB, 克隆性, neoantigen质量
微环境T细胞状态, B细胞, TLS, CAF, TAM
宿主因素HLA多样性, germline背景
微生物组肠道菌群, 代谢产物, 分泌因子
临床指标NLR, 白蛋白, 血液免疫谱, 动态监测

“不是寻找完美的生物标志物,而是构建能真实反映免疫复杂性的多层整合模型。”
Instead of searching for the ‘perfect biomarker’, we should develop a system-level predictive framework to reflect the complexity of immune response.


三、文章特别指出的研究挑战

作者在文中系统总结了当前免疫预测领域面临的主要挑战:

挑战内容说明
📍 异质性PD-L1表达不均、突变亚克隆化
📍 检测不一致不同平台、抗体、cutoff不统一
📍 样本选择活检部位、时间点影响巨大
📍 功能缺失多为相关性数据,缺少机制验证
📍 模型复杂性多组学整合难、计算需求高

四、结语:预测不是“选一个”,而是“构建系统”

本篇 Cancer Cell 综述,不仅总结了经典与新兴生物标志物,更重要的是指出了未来免疫预测需要的转变方向:

  • 从单一指标 → 多模态整合
  • 从静态特征 → 动态状态
  • 从分子表达 → 细胞功能+结构位置

这为免疫治疗未来的精准预测和个体化治疗奠定了理论基础,也为科研工作者提供了系统性的研究框架。


👋 欢迎关注我的生信学习专栏~ 如果觉得文章有帮助,别忘了点赞、关注、评论!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信小鹏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值