👋 欢迎关注我的生信学习专栏~ 如果觉得文章有帮助,别忘了点赞、关注、评论!
在过去十年中,**免疫检查点抑制剂(ICIs)**彻底改变了癌症治疗格局,部分患者实现了前所未有的长期缓解,甚至“功能性治愈”。PD-1、PD-L1、CTLA-4 等抗体药物不断获得适应症扩展,开启了“精准免疫治疗”时代。
然而,一个关键问题始终困扰着临床工作者:
谁才能真正从免疫治疗中获益?我们如何在治疗前预测疗效?
带着这一核心问题,2025 年 Cancer Cell 发表了由 Stephen Wang 和 Timothy Chan 撰写的重磅综述文章:
《Navigating established and emerging biomarkers for immune checkpoint inhibitor therapy》
该文系统梳理了免疫治疗中既有与新兴的疗效预测生物标志物,不仅总结临床标准,也深入机制与多组学数据,提供了完整而清晰的标志物地图。
一、为什么要预测免疫治疗疗效?
尽管免疫治疗疗效显著,但仅有20-40%的患者能够获得持续缓解,部分患者甚至出现加速进展或严重免疫相关副反应。因此,临床上迫切需要:
- 精准筛选受益患者;
- 避免无效治疗及不必要毒副反应;
- 为联合用药和新策略开发提供理论支持。
目前常用的预测指标包括:
- PD-L1 表达
- 肿瘤突变负荷(TMB)
- 微卫星不稳定性(MSI)/错配修复缺陷(dMMR)
但这些标志物在真实世界中的预测效果远低于理想状态,这正是本文综述深入探讨的问题。
二、文章思路概览(详细解析)
本文从“我们现在用什么”到“我们未来可以怎么做”,分三大部分逐步推进:
FDA批准的标志物(左上):PD-L1 表达、TMB、MSI 等;
已研究但尚未批准的肿瘤内在因素(右上):克隆性突变、neoantigen 质量、HLA LOH 等;
免疫微环境因素(左下):TILs 密度、TRM/TPEX状态、TAM极化、CAF结构等;
宿主与外源因素(右下):HLA多样性、微生物组、代谢物、germline eQTL等。
第一部分:已批准标志物的临床价值与局限
核心问题:
目前有哪些标志物已用于临床?预测效果如何?是否可靠?
内容要点:
-
PD-L1 表达评分:
- TPS(肿瘤细胞PD-L1阳性比例)
- CPS(肿瘤+免疫细胞阳性比例)
- 不同癌种/抗体/公司伴随诊断存在巨大差异
-
TMB(Tumor Mutation Burden):
- 越多突变≠越好,应考虑突变是否具免疫原性
- 引入 clonal TMB 和 persistent TMB 概念
-
MSI/dMMR:
- 是FDA批准的组织无关标志物
- 但 MSI+ 并不总是免疫应答强,需结合TMB与免疫活性理解
小结:
临床确实依赖这些标志物
但预测效力有限,无法解释多数患者差异
作者观点:这些是“必要但不充分”的预测信息
第二部分:机制层面新兴标志物拓展
核心问题:
除了PD-L1、TMB,还有哪些机制性因素影响免疫治疗反应?
内容要点:
-
T细胞功能状态:
- TPEX、TRM、TTEX 表型预测再激活潜力
- 功能状态比数量更重要
-
B细胞与TLS(类淋巴结构):
- 与免疫应答正相关,是新的积极预测信号
-
TAM/CAF 亚群结构性抑制作用:
- 如LRRC15+ CAF会限制T细胞渗透
-
转录组/单细胞/表观组学:
- IFN-γ、TGF-β、WNT、EMT 等 signature
- 单细胞揭示新亚群(CXCL13+ helper CD4+)
- 表观重塑可激活病毒模拟通路(STING)
小结:
更加接近机制、具备生物学解释力
多数为观察性发现,缺乏标准验证
作者强调:不能过度解读“亚群”,需因果验证
第三部分:向整合预测模型迈进(未来方向)
核心问题:
如何整合多模态信息,实现系统化预测?
内容要点:
作者提出未来应构建一个“系统级预测框架”,将以下多维信号纳入考量:
模态 | 内容示例 |
---|---|
肿瘤基因组 | TMB, 克隆性, neoantigen质量 |
微环境 | T细胞状态, B细胞, TLS, CAF, TAM |
宿主因素 | HLA多样性, germline背景 |
微生物组 | 肠道菌群, 代谢产物, 分泌因子 |
临床指标 | NLR, 白蛋白, 血液免疫谱, 动态监测 |
“不是寻找完美的生物标志物,而是构建能真实反映免疫复杂性的多层整合模型。”
Instead of searching for the ‘perfect biomarker’, we should develop a system-level predictive framework to reflect the complexity of immune response.
三、文章特别指出的研究挑战
作者在文中系统总结了当前免疫预测领域面临的主要挑战:
挑战 | 内容说明 |
---|---|
📍 异质性 | PD-L1表达不均、突变亚克隆化 |
📍 检测不一致 | 不同平台、抗体、cutoff不统一 |
📍 样本选择 | 活检部位、时间点影响巨大 |
📍 功能缺失 | 多为相关性数据,缺少机制验证 |
📍 模型复杂性 | 多组学整合难、计算需求高 |
四、结语:预测不是“选一个”,而是“构建系统”
本篇 Cancer Cell 综述,不仅总结了经典与新兴生物标志物,更重要的是指出了未来免疫预测需要的转变方向:
- 从单一指标 → 多模态整合
- 从静态特征 → 动态状态
- 从分子表达 → 细胞功能+结构位置
这为免疫治疗未来的精准预测和个体化治疗奠定了理论基础,也为科研工作者提供了系统性的研究框架。
👋 欢迎关注我的生信学习专栏~ 如果觉得文章有帮助,别忘了点赞、关注、评论!