ICP的不同解法:SVD分解,高斯牛顿法。代码实现
ICP (Iterative Closest Point,最近迭代)是点云配准中的一个很重要的算法。假设有两个点云P和Q,想要找到一个变换T,使得P=TQ,那么就需要使用到这个算法。1.最近邻查找这一步是为Q中的点Qi找到Q中相对应的点。这个要分情况讨论:比如在RGBD-slam中,特征点的匹配已经为我们找到了P、Q中点的对应关系,那么这一步其实是已经完成了。但是对于两坨点云,没有点和点的对应关系,我们只好先做这样一个假设:离Qi最近的P中的点Pi就是它对应的点,显然这个是不准确的,但是我们可以通过
原创
2021-04-13 14:30:57 ·
3899 阅读 ·
4 评论