Lidar
文章平均质量分 83
激光雷达点云处理相关
LimitOut
这个作者很懒,什么都没留下…
展开
-
kitti rotation,label等细节相关
kitti label rotation_ykitti rotation1.在sencond 和 det3d中,均是从kitti label信息中读取的在相机坐标系下的rotation信息,在训练过程中也是回归的camera坐标系下的rotation,如果我想得到lidar坐标系下的rotation公式为:rotation_lidar_y = - (rotation_cam_y + pi/2),至于怎么来的,抽出时间来讲一下,经过网络后得到的输出为(Center_lidar(x,y,z),size_原创 2021-02-04 20:56:34 · 940 阅读 · 4 评论 -
3D-Dection系列论文1:Pointpillars ---数据流动篇
数据流动篇这篇文章讲的是当example数据形成后,数据在网络里面流动的方式:首先是example如下:数据名称维度含义Voxels[9918,100,4]9918:pillar数量,100:每个pillar内的最大点数,4:XYZINum_points[9918]9918个int,每个pillar的真实点数coordinates[9918,4]待补充rect[2,4,4]2:batch_size;4*4 rt矩阵.Trv2c[2,4,原创 2020-09-28 15:00:19 · 1674 阅读 · 8 评论 -
VFE------多层的体素特征编码(Stacked Voxel Feature Encoding)
VFE------多层的体素特征编码(Stacked Voxel Feature Encoding)现在很多三维点云处理的网络中都会利用VFE结构来进行点云的特征处理。比如说VoxelNet:1. 将体素内所有点取平均值得到(Vx,Vy,Vz)。2. 将每个点的特征升维变成7维的特征点,即Vin。3. 首先将带有7个特征的每个点Pi输入到FC网络(FC+BN+ReLU)得到Point-wise feature,得到m维特征的点,即7 -> m.4. 然后经过Maxpoling对上一步得原创 2020-05-28 16:01:10 · 5852 阅读 · 2 评论 -
多激光雷达点云拼接(一)
两个velodyne激光雷达同时连接在一台电脑上的方法最近需要将两个激光雷达点云拼接到一起,琢磨了两天后最后终于可以实现了,记录一下.先说一下具体步骤:两个雷达需在同一IP网段内两个雷达的端口号不能一样.两个雷达的HOST IP设置为电脑的静态IP地址.需要修改velodyne的launch文件.do it!一、改变两个雷达的内部IP、端口等设置.两个雷达需在同一IP网段内...原创 2019-12-19 21:53:38 · 7445 阅读 · 3 评论 -
关于在ros回调函数中处理激光雷达点云累计数帧数据一起处理的操作
ROS中点云数据的叠加处理在我们处理点云数据的时候,我们经常会对点云的数据进行累加到一起在进行操作,也就是将几帧数据叠加为一个数据在进行处理,这在低线束的情况下是经常用到的,具体的操作过程如下:class object3dDetector { /*************Publish And Subcriber*************/private: ros::NodeH...原创 2019-12-11 01:39:09 · 2626 阅读 · 6 评论 -
关于大疆雷达MID100 ROS转发topic丢失数据的问题
关于大疆雷达的通讯问题这部分比较主要,因为当时卡在这个问题上了好久,主要问题是大疆雷达在rviz实时显示的时候,livox/lidar这个topic的数据其实是很全的,但是我在转发的时候(单纯的转发,没做任何处理操作),这个时候就发现,我转发的数据会丢失,效果图如下:彩色的部分是/livox/lidar原话题的数据,白色的是我直接转发的数据,但是发现有的时候有个雷达的数据没有,而且是闪烁性的,...原创 2019-12-11 01:29:09 · 1460 阅读 · 1 评论 -
激光雷达点云--点云栅格化(二)
二维点云栅格化优化 基本思路:按照点云中的xyz坐标值,直接判断放到相应的栅格中,因为定义每个栅格的大小和多少是知道的,比如我的x值是11.5,每个栅格设置的大小是1m,那我x所在的行就是第12行。在上次的代码中已经提及过。直接上代码:for (int count = 0; count < temp_cloud->points.size(); count++) {// ...原创 2019-11-07 17:14:25 · 8344 阅读 · 15 评论 -
激光雷达点云---点云二维栅格化处理
激光点云栅格化处理 激光点云地图存储的是传感器对环境的原始扫描点云,优点是保留信息完整,缺点是计算量大、不能直接用于导航避障;特征地图存储的是环境中的特殊几何特征,如电线杆、路标、障碍物边缘等,其计算量小但保留信息过少需进行过滤后才能进行使用。 激光点云栅格化核心思想是将激光雷达所扫描到的区域用网格进行处理,每个栅格点云代表空间的一小块区域,内含一部分点云,点云栅格化处理分为二维栅格化...原创 2019-11-06 21:52:10 · 16664 阅读 · 4 评论