Pytorch深度学习
LimitOut
这个作者很懒,什么都没留下…
展开
-
3D-Dection系列论文1:Pointpillars ---example是如何生成的?
注:此文是解析的是pointpillar不是second\color{red}{注:此文是解析的是pointpillar不是second}注:此文是解析的是pointpillar不是second我们来看一下网络中的example是如何来的~首先我们通过create_data.py得到了各种pkl文件.然后会通过下面的函数: eval_dataset = input_reader_builder.build( input_cfg, model_cfg,原创 2020-09-28 14:55:09 · 1235 阅读 · 2 评论 -
Pytorch 深度学习 Day03 --梯度下降
1.局部极小值 对于目标函数 f(x) ,如果 f(x) 在 x 上的值比在 x 邻近的其他点的值更小,那么 f(x) 可能是一个局部最小值(local minimum)。如果 f(x) 在 x 上的值是目标函数在整个定义域上的最小值,那么 f(x) 是全局最小值(global minimum)。 深度学习模型的目标函数可能有若干局部最优值。当一个优化问题的数值解在局部最优解附近时,由于目标...原创 2020-04-08 12:00:57 · 288 阅读 · 0 评论 -
Pytorch 深度学习 Day03 ---批量归一化与残差网格
批量归一化批量归一化的提出正是为了应对深度模型训练的挑战。在模型训练时,批量归一化利用小批量上的均值和标准差,不断调整神经网络中间输出,从而使整个神经网络在各层的中间输出的数值更稳定。批量归一化和下一节将要介绍的残差网络为训练和设计深度模型提供了两类重要思路。批量归一化曾对全连接层和卷积层做批量归一化的方法稍有不同。下面我们将分别介绍这两种情况下的批量归一化。对全连接层做批量归一化我们先...原创 2020-02-20 17:40:33 · 517 阅读 · 0 评论 -
Pytorch 深度学习 Day02 ---AlexNet、VGG、NIN、GooLeNet
深度卷积神经网络(AlexNet)在LeNet提出后的将近20年里,神经网络一度被其他机器学习方法超越,如支持向量机。虽然LeNet可以在早期的小数据集上取得好的成绩,但是在更大的真实数据集上的表现并不尽如人意。一方面,神经网络计算复杂。虽然20世纪90年代也有过一些针对神经网络的加速硬件,但并没有像之后GPU那样大量普及。因此,训练一个多通道、多层和有大量参数的卷积神经网络在当年很难完成。另一...原创 2020-02-16 21:28:04 · 637 阅读 · 0 评论 -
Pytorch 深度学习 Day02 LeNet
卷积神经网络在“多层感知机的从零开始实现”一节里我们构造了一个含单隐藏层的多层感知机模型来对Fashion-MNIST数据集中的图像进行分类。每张图像高和宽均是28像素。我们将图像中的像素逐行展开,得到长度为784的向量,并输入进全连接层中。然而,这种分类方法有一定的局限性。图像在同一列邻近的像素在这个向量中可能相距较远。它们构成的模式可能难以被模型识别。对于大尺寸的输入图像,使用全连接层容...原创 2020-02-16 17:37:03 · 260 阅读 · 0 评论 -
Pytorch 深度学习 Day01 ---多层感知机
多层感知机我们已经介绍了包括线性回归和softmax回归在内的单层神经网络。然而深度学习主要关注多层模型。在本节中,我们将以多层感知机(multilayer perceptron,MLP)为例,介绍多层神经网络的概念。隐藏层多层感知机在单层神经网络的基础上引入了一到多个隐藏层(hidden layer)。隐藏层位于输入层和输出层之间。图3.3展示了一个多层感知机的神经网络图。在图3.3所...原创 2020-02-16 00:48:00 · 320 阅读 · 0 评论 -
Pytorch 深度学习 Day02 ---卷积神经网络基础
二维卷积层卷积神经网络(convolutional neural network)是含有卷积层(convolutional layer)的神经网络。本章中介绍的卷积神经网络均使用最常见的二维卷积层。它有高和宽两个空间维度,常用来处理图像数据。二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积...原创 2020-02-15 23:41:20 · 219 阅读 · 0 评论 -
Pytorch 深度学习 Day01 ---Softmax与分类模型
Softmax与分类模型内容包含:1.softmax回归的基本概念2.如何获取Fashion-MNIST数据集和读取数据3.softmax回归模型的从零开始实现,实现一个对Fashion-MNIST训练集中的图像数据进行分类的模型4.使用pytorch重新实现softmax回归模型softmax回归的基本概念分类问题一个简单的图像分类问题,输入图像的高和宽均为2像素,色彩为灰度。...原创 2020-02-15 16:58:11 · 571 阅读 · 0 评论 -
Pytorch 深度学习 Day01 ---线性回归
线性回归主要内容包括:1.线性回归的基本要素2.线性回归模型从零开始的实现3.线性回归模型使用pytorch的简洁实现线性回归的基本要素模型为了简单起见,这里我们假设价格只取决于房屋状况的两个因素,即面积(平方米)和房龄(年)。接下来我们希望探索价格与这两个因素的具体关系。线性回归假设输出与各个输入之间是线性关系:数据集我们通常收集一系列的真实数据,例如多栋房屋的真实售出价格和它...原创 2020-02-14 23:45:44 · 293 阅读 · 0 评论