The chain rule(链式法则)

1,用于复合函数求导的一个法则。

2,应用场景:

假 设 要 对 y = f ( g ( x ) ) 求 导 , 即 求 d y d x 的 值 , 假设要对y=f(g(x))求导,即求\frac{dy}{dx}的值, y=f(g(x))dxdy
可 以 设 μ = g ( x ) , 可以设\mu=g(x), μ=g(x),
则 d y d x = d y d μ × d μ d x 则\frac{dy}{dx}=\frac{dy}{d\mu}\times\frac{d\mu}{dx} dxdy=dμdy×dxdμ

3,例子:

有函数 y = sin ⁡ 2 x y=\sin^2x y=sin2x,求y对x的导数。

上述函数可以拆解为 y = μ 2 和 μ = sin ⁡ x , y=\mu^2和\mu=\sin x, y=μ2μ=sinx
则 d y d μ = 2 μ , d μ d x = cos ⁡ x , 则\frac{dy}{d\mu}=2\mu,\frac{d\mu}{dx}=\cos x, dμdy=2μdxdμ=cosx
即 d y d x = 2 μ cos ⁡ x = 2 sin ⁡ x cos ⁡ x = sin ⁡ 2 x 即\frac{dy}{dx}=2\mu\cos x=2\sin x\cos x=\sin2x dxdy=2μcosx=2sinxcosx=sin2x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值