7. The Chain Rule

本节主要说明链式法则,即多维空间中,可导函数的复合也是可导的。Theorem 7.1是本节的主要定理。Corollary 7.2说明 C r C^r Cr类函数的复合也是 C r C^r Cr类。Theorem 7.3是多维空间的均值定理。Theorem 7.4说明多维空间下反函数定理也成立,但是反函数的导数变为原函数导数的逆矩阵,由此可知,反函数可导需要原函数导数矩阵非奇异。

####Exercises
Exercise 1. Let f : R 3 → R 2 f:\mathbf{R}^3\to\mathbf{R}^2 f:R3R2 satisfy the condition f ( 0 ) = ( 1 , 2 ) f(\mathbf{0})=(1,2) f(0)=(1,2) and
D f ( 0 ) = [ 1 2 3 0 0 1 ] Df(\mathbf{0})=\begin{bmatrix}1&2&3\\0&0&1\end{bmatrix} Df(0)=[102031]
Let g : R 2 → R 2 g:\mathbf{R}^2\to\mathbf{R}^2 g:R2R2 be defined by the equation
g ( x , y ) = ( x + 2 y + 1 , 3 x y ) g(x,y)=(x+2y+1,3xy) g(x,y)=(x+2y+1,3xy)
Find D ( g ∘ f ) ( 0 ) D(g\circ f)(\mathbf{0}) D(gf)(0).
Solution: We first have
D g ( x , y ) = [ 1 2 3 y 3 x ] , D g ( 1 , 2 ) = [ 1 2 6 3 ] Dg(x,y)=\begin{bmatrix}1&2\\3y&3x\end{bmatrix},Dg(1,2)=\begin{bmatrix}1&2\\6&3\end{bmatrix} Dg(x,y)=[13y23x],Dg(1,2)=[1623]
then by the chain rule
D ( g ∘ f ) ( 0 ) = D g ( f ( 0 ) ) ⋅ D f ( 0 ) = D g ( 1 , 2 ) ⋅ D f ( 0 ) = [ 1 2 6 3 ] [ 1 2 3 0 0 1 ] = [ 1 2 5 6 12 21 ] \begin{aligned}D(g\circ f)(\mathbf{0})&=Dg(f(\mathbf{0})){\cdot}Df(\mathbf{0})=Dg(1,2){\cdot}Df(\mathbf{0})\\&=\begin{bmatrix}1&2\\6&3\end{bmatrix}\begin{bmatrix}1&2&3\\0&0&1\end{bmatrix}=\begin{bmatrix}1&2&5\\6&12&21\end{bmatrix}\end{aligned} D(gf)(0)=Dg(f(0))Df(0)=Dg(1,2)Df(0)=[1623][102031]=[16212521]

Exercise 2. Let f : R 2 → R 3 f:\mathbf{R}^2\to\mathbf{R}^3 f:R2R3 and g : R 3 → R 2 g:\mathbf{R}^3\to\mathbf{R}^2 g:R3R2 be given by the equations
f ( x ) = ( e 2 x 1 + x 2 , 3 x 2 − cos ⁡ x 1 , x 1 2 + x 2 + 2 ) f(x)=(e^{2x_1+x_2},3x_2-\cos{x_1},x_1^2+x_2+2) f(x)=(e2x1+x2,3x2cosx1,x12+x2+2)
g ( y ) = ( 3 y 1 + 2 y 2 + y 3 2 , y 1 2 − y 3 + 1 ) g(y)=(3y_1+2y_2+y_3^2,y_1^2-y_3+1) g(y)=(3y1+2y2+y32,y12y3+1)
( a ) If F ( x ) = g ( f ( x ) ) F(x)=g(f(x)) F(x)=g(f(x)), find D F ( 0 ) DF(\mathbf{0}) DF(0).
( b ) If G ( y ) = f ( g ( y ) ) G(y)=f(g(y)) G(y)=f(g(y)), find D G ( 0 ) DG(\mathbf{0}) DG(0).
Solution: We first have f ( 0 , 0 ) = ( 1 , − 1 , 2 ) , g ( 0 , 0 , 0 ) = ( 0 , 1 ) f(0,0)=(1,-1,2),g(0,0,0)=(0,1) f(0,0)=(1,1,2),g(0,0,0)=(0,1) and
D f ( x 1 , x 2 ) = [ 2 e 2 x 1 + x 2 e 2 x 1 + x 2 sin ⁡ x 1 3 2 x 1 1 ] , D g ( y 1 , y 2 , y 3 ) = [ 3 2 2 y 3 2 y 1 0 − 1 ] Df(x_1,x_2 )=\begin{bmatrix}2e^{2x_1+x_2}&e^{2x_1+x_2}\\{\sin}x_1&3\\2x_1&1\end{bmatrix},Dg(y_1,y_2,y_3 )=\begin{bmatrix}3&2&2y_3\\2y_1&0&-1\end{bmatrix} Df(x1,x2)=2e2x1+x2sinx12x1e2x1+x231,Dg(y1,y2,y3)=[32y1202y31]
( a ) By the chain rule we have
D F ( 0 ) = D g ( f ( 0 ) ) ⋅ D f ( 0 ) = D g ( 1 , − 1 , 2 ) ⋅ D f ( 0 , 0 ) = [ 3 2 4 2 0 − 1 ] [ 2 1 0 3 0 1 ] = [ 6 13 4 1 ] \begin{aligned}DF(\mathbf{0})&=Dg(f(\mathbf{0})){\cdot}Df(\mathbf{0})=Dg(1,-1,2){\cdot}Df(0,0)\\&=\begin{bmatrix}3&2&4\\2&0&-1\end{bmatrix}\begin{bmatrix}2&1\\0&3\\0&1\end{bmatrix}=\begin{bmatrix}6&13\\4&1\end{bmatrix}\end{aligned} DF(0)=Dg(f(0))Df(0)=Dg(1,1,2)Df(0,0)=[322041]200131=[64131]
( b ) By the chain rule we have
D G ( 0 ) = D f ( g ( 0 ) ) ⋅ D g ( 0 ) = D f ( 0 , 1 ) ⋅ D g ( 0 , 0 , 0 ) = [ 2 e e 0 3 0 1 ] [ 3 2 0 0 0 − 1 ] = [ 6 e 4 e − e 0 0 − 3 0 0 − 1 ] \begin{aligned}DG(\mathbf{0})&=Df(g(\mathbf{0})){\cdot}Dg(\mathbf{0})=Df(0,1){\cdot}Dg(0,0,0)\\&=\begin{bmatrix}2e&e\\0&3\\0&1\end{bmatrix}\begin{bmatrix}3&2&0\\0&0&-1\end{bmatrix}=\begin{bmatrix}6e&4e&-e\\0&0&-3\\0&0&-1\end{bmatrix}\end{aligned} DG(0)=Df(g(0))Dg(0)=Df(0,1)Dg(0,0,0)=2e00e31[302001]=6e004e00e31

Exercise 3. Let f : R 3 → R f:\mathbf{R}^3\to\mathbf{R} f:R3R and g : R 2 → R g:\mathbf{R}^2\to\mathbf{R} g:R2R be differentiable. Let F : R 2 → R F:\mathbf{R}^2\to\mathbf{R} F:R2R be defined by the equation
F ( x , y ) = f ( x , y , g ( x , y ) ) F(x,y)=f(x,y,g(x,y)) F(x,y)=f(x,y,g(x,y))
( a ) Find D F DF DF in terms of the partials of f f f and g g g.
( b ) If F ( x , y ) = 0 F(x,y)=0 F(x,y)=0 for all ( x , y ) (x,y) (x,y), find D 1 g D_1g D1g and D 2 g D_2g D2g in terms of the partials of f f f.
Solution:
( a ) We have D F ( x , y ) = [ D 1 F ( x , y ) D 2 F ( x , y ) ] DF(x,y)=\begin{bmatrix}D_1 F(x,y)&D_2 F(x,y) \end{bmatrix} DF(x,y)=[D1F(x,y)D2F(x,y)], and
D 1 F ( x , y ) = lim ⁡ t → 0 f ( x + t , y , g ( x + t , y ) ) − f ( x , y , g ( x , y ) ) t = lim ⁡ t → 0 f ( x + t , y , g ( x + t , y ) ) − f ( x , y , g ( x + t , y ) ) t + lim ⁡ t → 0 f ( x , y , g ( x + t , y ) ) − f ( x , y , g ( x , y ) ) t = D 1 f ( x , y , g ( x , y ) ) + D 3 f ( x , y , g ( x , y ) ) ⋅ D 1 g ( x , y ) \begin{aligned}D_1 F(x,y)&=\lim_{t→0}\frac{f(x+t,y,g(x+t,y))-f(x,y,g(x,y))}{t}\\&=\lim_{t→0}\frac{f(x+t,y,g(x+t,y))-f(x,y,g(x+t,y))}{t}+\lim_{t→0}\frac{f(x,y,g(x+t,y))-f(x,y,g(x,y))}{t}\\&=D_1 f(x,y,g(x,y))+D_3 f(x,y,g(x,y)){\cdot}D_1 g(x,y)\end{aligned} D1F(x,y)=t0limtf(x+t,y,g(x+t,y))f(x,y,g(x,y))=t0limtf(x+t,y,g(x+t,y))f(x,y,g(x+t,y))+t0limtf(x,y,g(x+t,y))f(x,y,g(x,y))=D1f(x,y,g(x,y))+D3f(x,y,g(x,y))D1g(x,y)
D 2 F ( x , y ) = D 2 f ( x , y , g ( x , y ) ) + D 3 f ( x , y , g ( x , y ) ) ⋅ D 2 g ( x , y ) D_2 F(x,y)=D_2 f(x,y,g(x,y))+D_3 f(x,y,g(x,y)){\cdot}D_2 g(x,y) D2F(x,y)=D2f(x,y,g(x,y))+D3f(x,y,g(x,y))D2g(x,y)
( b ) In this case D 1 F ( x , y ) = D 2 F ( x , y ) = 0 D_1 F(x,y)=D_2 F(x,y)=0 D1F(x,y)=D2F(x,y)=0, thus
D 1 g ( x , y ) = [ D 3 f ( x , y , g ( x , y ) ) ] − 1 ⋅ ( − D 1 f ( x , y , g ( x , y ) ) ) D_1 g(x,y)=[D_3 f(x,y,g(x,y))]^{-1}{\cdot}(-D_1 f(x,y,g(x,y))) D1g(x,y)=[D3f(x,y,g(x,y))]1(D1f(x,y,g(x,y)))
D 2 g ( x , y ) = [ D 3 f ( x , y , g ( x , y ) ) ] − 1 ⋅ ( − D 2 f ( x , y , g ( x , y ) ) ) D_2 g(x,y)=[D_3 f(x,y,g(x,y))]^{-1}{\cdot}(-D_2 f(x,y,g(x,y))) D2g(x,y)=[D3f(x,y,g(x,y))]1(D2f(x,y,g(x,y)))

Exercise 4. Let g : R 2 → R 2 g:\mathbf{R}^2\to\mathbf{R}^2 g:R2R2 be defined by the equation g ( x , y ) = ( x , y + x 2 ) g(x,y)=(x,y+x^2) g(x,y)=(x,y+x2). Let f : R 2 → R f:\mathbf{R}^2\to\mathbf{R} f:R2R be the function defined in Example 3 of Section 5. Let h = f ∘ g h=f\circ g h=fg. Show that the directional derivatives of f f f and g g g exist everywhere, but there is a u ≠ 0 \mathbf{u}\neq\mathbf{0} u=0 for which h ′ ( 0 ; u ) h'(\mathbf{0};\mathbf{u}) h(0;u) does not exist.
Solution: The directional derivatives of f exists everywhere is clear from the text. Since D g ( x , y ) Dg(x,y) Dg(x,y) exists everywhere and D g ( x , y ) = [ 1 2 x 0 1 ] Dg(x,y)=\begin{bmatrix}1&2x\\0&1\end{bmatrix} Dg(x,y)=[102x1], the directional derivatives of g exists everywhere since
g ′ ( a ; u ) = D g ( a ) ⋅ u g'(\mathbf{a};\mathbf{u})=Dg(\mathbf{a}){\cdot}\mathbf{u} g(a;u)=Dg(a)u
To show ∃ u ≠ 0 \exists\mathbf{u}\neq 0 u=0, s.t. h ′ ( 0 ; u ) h'(\mathbf{0};\mathbf{u}) h(0;u) does not exist, first notice h ( 0 ) = f ( g ( 0 ) ) = f ( 0 , 0 ) = 0 h(\mathbf{0})=f(g(\mathbf{0}))=f(0,0)=0 h(0)=f(g(0))=f(0,0)=0, let u = ( 1 , 0 ) T \mathbf{u}=(1,0)^T u=(1,0)T, then when t → 0 , t ≠ 0 t→0,t\neq 0 t0,t=0, we have
h ( 0 + t u ) − h ( 0 ) t = h ( t , 0 ) t = f ( t , t 2 ) t = 1 t t 2 t 2 ( t 4 + t 4 ) = 1 2 t \frac{h(\mathbf{0}+t\mathbf{u})-h(\mathbf{0})}{t}=\frac{h(t,0)}{t}=\frac{f(t,t^2)}{t}=\frac{1}{t} \frac{t^2 t^2}{(t^4+t^4)}=\frac{1}{2t} th(0+tu)h(0)=th(t,0)=tf(t,t2)=t1(t4+t4)t2t2=2t1
thus the limit
h ′ ( 0 ; u ) = lim ⁡ t → 0 h ( 0 + t u ) − h ( 0 ) t = lim ⁡ t → 0 1 2 t h'(\mathbf{0};\mathbf{u})=\lim_{t→0}\frac{h(\mathbf{0}+t\mathbf{u})-h(\mathbf{0})}{t}=\lim_{t→0}\frac{1}{2t} h(0;u)=t0limth(0+tu)h(0)=t0lim2t1
does not exist.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值