最近在做的项目中要加入NavMesh,实现AI的寻路,如果使用unity 3.5自带的navmesh,好像单机的还可以使用,
网络游戏就有点麻烦了,一是不好操纵navmesh,只能填好参数,做修改或者函数调用就不可能了,二是没有节点数据
服务器没有这个数据,不好发送给客户端。所以网络游戏下的navmesh自己实现还是比较有价值。
以下说明下步骤:
地形网格须为三角形,所以要对网格三角形化,也就是Delauney Triangulate三角化
然后就是用A*寻路,中间很多例如3-2合并,裁剪就不写了,可以参考其他文章
1.1 等待插入点
Triangular mesh 为已有三角化mesh,+为需要插入的点,要保证插入点后仍为Triangular mesh
1.2 判断是否在相邻三角形的外接圆内
插入点所在三角形和它的邻接三角形计算外接圆,如果点在外接圆内,则此点连接到三角形各点,原三角形删除
2. 具体算法:
输入:vertex list
输出:triangle list
初始化triangle list
确定超三角形(超三角形为所有顶点的更外层的包围三角形)
加入超三角形顶点到vertes list
加入超三角形到triangle list
for (sameplePoint in vertexList)
初始化edge buffer
for (triangle in triangleList)
计算triangle外接圆中心和半径
if (point 在triangle外接圆内)
加入三个triangle edges到edge buffer
从triangleList删除这个triangle
在edge buffer删除所有双向边,这样做是只剩下封闭多边形的边,且保持方向一致
在点与封闭多边形的边之间生成的所有三角形加入到triangleList
在triangle list里删除任何使用到超三角形顶点的三角形
从vertexList里删除超三角形顶点
和其中的C source代码,描述的最简单直接)
3. A* 算法
navmesh里仍然使用A*算法来计算最短路径,只是采样点大为下降,此处先介绍最基本A*算法
然后介绍navmesh里与基本A*算法有何不同
3.1 基本A*
在一个九方格(中间点为开始点),中间竖形障碍物,右边目标点的 场景下,开始点如何越过障碍到达终点?
首先计算startPos到各邻接方格中心的距离G
再计算各邻接方格中心到targetPos的距离H
2者相加为实际路径长度F
从startPos到targetPos的直接路径被障碍物挡住,不可行走,那么只能走一步看一步
先选择startPost周围9个邻接方格,取F值最小者,当然是右边那个方格,
然后以右边方格为起点再往右走发现为障碍物,不可走,那么以它为中心的9个邻接方格
选择右下角方格(它的F值最小),这其中要计算连接关系,就是这个方格是从哪个方格过来的
会有个父方格属性。
如何寻找下一个要求的方格,是从当前点邻接方格和所有已访问点的邻接方格中提取的(openList)通过从这个list中寻找最小F,还要更新G值,更新G值也就是从父方格到此方格
累加的长度,如果比之前的G值更小,则更新父方格和G值。
这样到最后会有个方格连接路线,从startPos到targetPos,这样就计算出最短路径了。
4. navmesh与A*有什么不同
A* 你可以理解为方格的寻径,而navmesh你可以理解为三角形的寻径
G值为从第一个triangle中心点到第二格triangle中心点途径邻接边中点的路径长度
F值仍为到targetPost的长度,其他算法依旧
但最后需要路径平滑,不然路径歪歪扭扭
具体算法在:"Simplified 3D Movement and Pathfinding Using Navigation Meshes" by Greg Snook (Game Programming Gems)