Yolo8出来一段时间了,包含了目标检测、实例分割、人体姿态预测、旋转目标检测、图像分类等功能,所以想花点时间总结记录一下这几个功能的使用方法和自定义数据集需要注意的一些问题,本篇是第二篇,目标检测功能,自定义数据集的训练。
YOLO(You Only Look Once)是一种流行的物体检测和图像分割模型,由华盛顿大学的约瑟夫-雷德蒙(Joseph Redmon)和阿里-法哈迪(Ali Farhadi)开发。YOLO 于 2015 年推出,因其高速度和高精确度而迅速受到欢迎。
2016 年发布的YOLOv2 通过纳入批量归一化、锚框和维度集群改进了原始模型。
2018 年推出的YOLOv3 使用更高效的骨干网络、多锚和空间金字塔池进一步增强了模型的性能。
YOLOv4于 2020 年发布,引入了 Mosaic 数据增强、新的无锚检测头和新的损失函数等创新技术。
YOLOv5进一步提高了模型的性能&#