================Semantics & Factorization============
1.第一个简单贝叶斯网络









==============Reasoning
Patterns==============





============Flow of Probabilistic Influence=============




==============Conditional Independence=============
D,I间无连线,相互独立
=========Independencies in Bayesian Networks==========
以上理论其实都为下图服务,可以看到条件概率被彻底约间。利用(非父亲、非儿子理论)
===============Naive Bayes==============


================Application - Medical Diagnosis=============




================Knowledge Engineering Example==================




good student对应的no accident反而降低了。注意:good
student-----》young升高,年轻人毛躁



注意AGE BLOCKgood students 对 Driver_quality的影响
