Probabilistic Graphical Models 2 Bayesian Network Fundamentals

================Semantics & Factorization============

1.第一个简单贝叶斯网络











==============Reasoning Patterns==============










============Flow of Probabilistic Influence=============





==============Conditional Independence=============

D,I间无连线,相互独立

=========Independencies in Bayesian Networks==========

以上理论其实都为下图服务,可以看到条件概率被彻底约间。利用(非父亲、非儿子理论)

===============Naive Bayes==============




================Application - Medical Diagnosis=============








================Knowledge Engineering Example==================








good student对应的no accident反而降低了。注意:good student-----》young升高,年轻人毛躁






注意AGE   BLOCKgood students 对 Driver_quality的影响





 

 

 

 






已标记关键词 清除标记
相关推荐
用python写的一段贝叶斯网络的程序 This file describes a Bayes Net Toolkit that we will refer to now as BNT. This version is 0.1. Let's consider this code an "alpha" version that contains some useful functionality, but is not complete, and is not a ready-to-use "application". The purpose of the toolkit is to facilitate creating experimental Bayes nets that analyze sequences of events. The toolkit provides code to help with the following: (a) creating Bayes nets. There are three classes of nodes defined, and to construct a Bayes net, you can write code that calls the constructors of these classes, and then you can create links among them. (b) displaying Bayes nets. There is code to create new windows and to draw Bayes nets in them. This includes drawing the nodes, the arcs, the labels, and various properties of nodes. (c) propagating a-posteriori probabilities. When one node's probability changes, the posterior probabilities of nodes downstream from it may need to change, too, depending on firing thresholds, etc. There is code in the toolkit to support that. (d) simulating events ("playing" event sequences) and having the Bayes net respond to them. This functionality is split over several files. Here are the files and the functionality that they represent. BayesNetNode.py: class definition for the basic node in a Bayes net. BayesUpdating.py: computing the a-posteriori probability of a node given the probabilities of its parents. InputNode.py: class definition for "input nodes". InputNode is a subclass of BayesNetNode. Input nodes have special features that allow them to recognize evidence items (using regular-expression pattern matching of the string descriptions of events). OutputNode.py: class definition for "output nodes". OutputBode is a subclass of BayesNetNode. An output node can have a list of actions to be performed when the node's posterior probability exceeds a threshold ReadWriteSigmaFiles.py: Functionality for loading and saving Bayes nets
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页