AI强化学习策略买卖股票的效果如何?

Github 项目:

GitHub - daocodedao/stable-baselines-stock: 深度强化学习自动炒股

主体参考了 https://github.com/wangshub/RL-Stock,修改了一些

  • requirements 修改到新版本
  • 支持 mac
  • stable-baselines 改为 stable-baselines3

使用强化学习预测股价,需要在决策的时候采取合适的行动 (Action) 使最后的奖励最大化。与监督学习预测未来的数值不同,强化学习根据输入的状态(如当日开盘价、收盘价等),输出系列动作(例如:买进、持有、卖出),并对好的动作结果不断进行奖励,对差的动作结果不断进行惩罚,使得最后的收益最大化,实现自动交易。

策略网络观测的就是一只股票的各项参数,比如开盘价、收盘价、成交数量等。部分数值会是一个很大的数值,比如成交金额或者成交量,有可能百万、千万乃至更大,为了训练时网络收敛,观测的状态数据输入时,必须要进行归一化,变换到 `[-1, 1]` 的区间内。

测试结果:

测试了 SH.600036  招商银行

训练集 1990-01-01 到 2019-11-30

测试集 2019-12-01 到 2024-09-13

测试了6次,每次结果都不一样。。。

参考:

https://pythondict.com/quant/reinforcement-learnning/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值