AI生成图片工具推荐汇总

以下是2025年主流的AI生成图片工具推荐,涵盖国内外热门平台,结合功能特点和使用场景进行分类整理:

一、综合类工具(支持多风格生成)

  1. DALL-E 2(OpenAI)
    • 特点:生成高度逼真的图像,支持通过文本描述添加细节(如阴影、纹理),适合商业设计和创意插图。
    • 官网:https://openai.com/dall-e-2
  2. Midjourney
    • 特点:专业级图像生成,输出质量极高,但需通过Discord操作,适合设计师和艺术创作者。
    • 官网:https://www.midjourney.com
  3. Stable Diffusion
  4. 即梦AI(字节跳动)
    • 特点:中文提示词友好,擅长东方美学风格(如古风、水墨画),支持生成带中文的插图和海报。
    • 官网:https://jimeng.jianying.com

二、垂直场景工具

  1. 文心一格(百度)
    • 特点:预置二次元、国潮等风格,支持图片拓展和背景替换,适合快速生成社交媒体配图。
    • 官网:百度搜索“文心一格”
  2. 通义万相(阿里)
    • 特点:文生图、涂鸦作图、相似图生成,适合电商和内容创作者。
    • 官网:阿里云平台内应用
  3. Tiamat
    • 特点:专注国潮风格,生成壁纸、头像等,支持纯中文提示词。
    • 官网:国内垂直AI平台(需搜索具体入口)
  4. Vega AI
    • 特点:支持文生图、图生图,叠加风格强度,生成图片无版权问题,适合商用。
    • 官网:在线AI绘图平台(需搜索具体入口)

三、免费或轻量级工具

  1. Dream by WOMBO
    • 特点:免费无限生成,支持上传参考图,艺术风格多样,适合新手。
    • 官网:https://dream.ai/create
  2. NightCafe
  3. StarryAI
  4. Fotor
    • 特点:每日10次免费生成,支持文本到图像和图像到图像转换,适合快速制作海报。
    • 官网:https://www.fotor.com

四、进阶与新兴工具

  1. Gemini 2.0(Google)
    • 特点:多模态编辑功能,通过语音指令修改图片(如调整发型、替换元素),适合动态创意6
    • 官网:https://gemini.google.com
  2. 可灵(快手)
  3. Runway ML
    • 特点:支持动画和3D模型生成,专业级视频创作,但需付费订阅。
    • 官网:https://runwayml.com

五、国内特色工具

  1. 无界AI
    • 特点:聚焦漫画风格,提供商用授权模板,适合自媒体内容创作。
    • 官网:国内AI平台(需搜索具体入口)
  2. 触手AI
    • 特点:二次元专属,通过微信小程序生成,支持上传参考图优化作品。
    • 入口:微信搜索“触手AI”小程序

注意事项

  • 版权问题:部分工具生成的图片可能存在侵权风险,商用前需确认授权政策。
  • 技术门槛:如Stable Diffusion需本地部署,Midjourney依赖Discord操作,适合有一定经验的用户。
### AI 图像生成技术及其应用 #### 定义与发展 图像生成是指利用计算机算法和技术创建或合成图像的过程。这一过程涉及多种技术和方法,在近年来由于深度学习和生成模型的发展而获得了显著进步[^1]。 #### 应用场景 在医疗健康领域,AI驱动的图像生成技术能够模拟真实的医学影像数据,例如CT扫描图和MRI图像。这些虚拟图像可以用于辅助医生培训、支持药物研发以及优化个性化治疗方案的设计。此外,这种方法还可以降低获取高质量医学图像的成本并减少对昂贵成像设备的依赖[^2]。 #### 关键技术 生成对抗网络(GANs)作为当前最流行的技术之一被广泛应用于图像生成任务中。该框架由两个神经网络组成——一个是负责创造逼真样本的生成器;另一个则是用来区分真假样本的判别器。两者相互竞争从而不断提升生成质量直至达到难以分辨的程度。 #### 社会影响与伦理考量 尽管AI图像生成功能强大且用途广泛,但也引发了诸多社会议题。这项新兴科技既带来了前所未有的机遇也伴随着潜在的风险挑战。对于创作者而言意味着新的表达方式同时也可能侵犯版权;企业则需考虑如何合理合法地运用此类工具;政府方面要权衡监管力度以促进创新的同时保护公众利益不受损害[^3]。 ```python import tensorflow as tf from tensorflow.keras import layers def build_generator(): model = tf.keras.Sequential() # 增加全连接层, 将输入向量映射到更高维度空间 model.add(layers.Dense(7*7*256, use_bias=False, input_shape=(100,))) model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) # 转换为四维张量以便后续卷积操作处理 model.add(layers.Reshape((7, 7, 256))) # 上采样至目标尺寸 (28x28), 同时增加通道数 model.add(layers.Conv2DTranspose( 128, kernel_size=5, strides=1, padding='same', use_bias=False)) model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) model.add(layers.Conv2DTranspose( 64, kernel_size=5, strides=2, padding='same', use_bias=False)) model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) model.add(layers.Conv2DTranspose( 1, kernel_size=5, strides=2, padding='same', activation='tanh', use_bias=False)) return model ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值