MVSnet的代价体积处理/CostRegNet/3D Unet

CostRegNet 类作为 MVSNet(Multi-View Stereo Network)网络的一部分时,它主要用于处理代价体积,并输出深度图。具体来说,它的输入和输出可以概述如下:

class CostRegNet(nn.Module):
    """
    CostRegNet 包含一系列卷积和转置卷积层,用于处理输入张量并生成输出。
    conv0 到 conv6 是编码部分,用于逐步提取特征。
    conv7, conv9, 和 conv11 是解码部分,用于逐步恢复特征。
    prob 是最终的卷积层,用于生成输出。
    """
    def __init__(self):
        super(CostRegNet, self).__init__()
        self.conv0 = ConvBnReLU3D(32, 8)

        self.conv1 = ConvBnReLU3D(8, 16, stride=2)
        self.conv2 = ConvBnReLU3D(16, 16)

        self.conv3 = ConvBnReLU3D(16, 32, stride=2)
        self.conv4 = ConvBnReLU3D(32, 32)

        self.conv5 = ConvBnReLU3D(32, 64, stride=2)
        self.conv6 = ConvBnReLU3D(64, 64)

        self.conv7 = nn.Sequential(
            nn.ConvTranspose3d(64, 32, kernel_size=3, padding=1, output_padding=1, stride=2, bias=False),
            nn.BatchNorm3d(32),
            nn.ReLU(inplace=True))

        self.conv9 = nn.Sequential(
            nn.ConvTranspose3d(32, 16, kernel_size=3, padding=1, output_padding=1, stride=2, bias=False),
            nn.BatchNorm3d(16),
            nn.ReLU(inplace=True))

        self.conv11 = nn.Sequential(
            nn.ConvTranspose3d(16, 8, kernel_size=3, padding=1, output_padding=1, stride=2, bias=False),
            nn.BatchNorm3d(8),
            nn.ReLU(inplace=True))

        self.prob = nn.Conv3d(8, 1, 3, stride=1, padding=1)
    # 将上采样后的特征图映射到所需的输出维度(通常是最终的预测结果,如概率图或分类图)
    def forward(self, x):
        conv0 = self.conv0(x)
        conv2 = self.conv2(self.conv1(conv0))
        conv4 = self.conv4(self.conv3(conv2))
        x = self.conv6(self.conv5(conv4))
        x = conv4 + self.conv7(x)
        x = conv2 + self.conv9(x)
        x = conv0 + self.conv11(x)
        x = self.prob(x)
        return x

输入

  1. 代价体积(Cost Volume):
    • 类型: 张量
    • 形状: (batch_size, num_channels, depth, height, width)
    • 说明: 代价体积是输入到 CostRegNet 的主要数据,它表示每个像素在不同深度假设下的匹配代价。num_channels 通常表示特征图的通道数,depth 表示深度假设的数量,heightwidth 是图像的空间维度。

处理流程

  1. 编码(下采样):

    • 使用一系列的卷积(conv0conv6)逐步提取代价体积的特征。这些卷积层通常会逐步减少空间分辨率,同时增加特征通道数,以提取高层次的特征。
  2. 解码(上采样):

    • 使用一系列的转置卷积(conv7, conv9, conv11)将特征图恢复到原始空间分辨率。这些层通常会逐步增加空间分辨率,同时减少特征通道数。
  3. 最终卷积(prob:

    • 将上采样后的特征图映射到最终的输出维度。通常是一个单通道的输出,用于表示深度图或概率图。

输出

  1. 深度图(或概率图):
    • 类型: 张量
    • 形状: (batch_size, 1, height, width, depth)
    • 说明: 输出的深度图(或概率图)是经过处理的代价体积的最终结果,通常用于表示每个像素的深度值。这个图可以用于计算每个像素的最优深度假设。

举个例子

假设 CostRegNet 类在一个多视角立体视觉任务中被使用,它的输入和输出如下:

  1. 输入:

    • 假设输入的代价体积的形状为 (2, 64, 32, 128, 128),其中 2 是 batch size,64 是特征通道数,32 是深度假设数量,128128 是图像的高度和宽度。
  2. 输出:

    • 输出的深度图的形状为 (2, 1, 128, 128, 32),其中 2 是 batch size,1 是深度图的通道数(通常是单通道),128128 是图像的空间维度,32 是深度假设数量。

工作流程总结

  1. 输入: 代价体积(包含不同深度假设下的匹配代价)。
  2. 处理:
    • 使用卷积层提取特征。
    • 使用转置卷积层恢复空间分辨率。
    • 使用最终卷积层生成深度图。
  3. 输出: 经过处理的深度图或概率图,用于进一步分析或计算。

这个网络的设计通过逐步提取和恢复特征,有助于提高深度估计的精度,并更好地处理代价体积中的复杂信息。

  • 5
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ocpro

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值