矩阵求逆引理
若矩阵
A
∈
C
N
×
N
A \in C^{N \times N}
A∈CN×N,
C
∈
C
M
×
M
C\in C^{M \times M}
C∈CM×M,均为非奇异矩阵,矩阵
B
∈
C
N
×
M
B\in C^{N \times M}
B∈CN×M,
D
∈
C
M
×
N
D\in C^{M \times N}
D∈CM×N,则矩阵A+BCD具有逆矩阵:
(
A
+
B
C
D
)
−
1
=
A
−
1
−
A
−
1
B
(
D
A
−
1
B
+
C
−
1
)
−
1
D
A
−
1
(A+BCD)^{-1}=A^{-1}-A^{-1}B(DA^{-1}B+C^{-1})^{-1}DA^{-1}
(A+BCD)−1=A−1−A−1B(DA−1B+C−1)−1DA−1