024矩阵求逆引理

  记得以前在学序贯平差的时候就用过矩阵求逆引理,但是当时只是死记,当然早就忘了。在此作个笔记记录一下引理的推导过程。
( A + B C D ) − 1 = A − 1 + X \begin{aligned} (A+BCD)^{-1} &= A^{-1} + X \end{aligned} (A+BCD)1=A1+X

⇓ 移项 \Downarrow \text{移项} 移项

( A + B C D ) ( A − 1 + X ) = E \begin{aligned} (A+BCD) (A^{-1} + X) &= E \end{aligned} (A+BCD)(A1+X)=E

⇓ 展开 \Downarrow \text{展开} 展开

E + A X + B C D A − 1 + B C D X = E \begin{aligned} E + AX + BCDA^{-1} + BCDX &= E \end{aligned} E+AX+BCDA1+BCDX=E

⇓ 求解 \Downarrow \text{求解} 求解

X = − ( A + B C D ) − 1 B C D A − 1 = − [ B C ( C − 1 B − 1 A + D ) ] − 1 B C D A − 1 = − ( C − 1 B − 1 A + D ) − 1 ( B C ) − 1 B C D A − 1 = − ( C − 1 B − 1 A + D ) − 1 D A − 1 = − [ ( C − 1 + D A − 1 B ) B − 1 A ] − 1 D A − 1 = − A − 1 B ( C − 1 + D A − 1 B ) − 1 D A − 1 \begin{aligned} X &= -(A+BCD)^{-1}BCDA^{-1} \\ &= -[BC(C^{-1}B^{-1}A+D)]^{-1}BCDA^{-1} \\ &= -(C^{-1}B^{-1}A+D)^{-1} (BC)^{-1} BCDA^{-1} \\ &= -(C^{-1}B^{-1}A+D)^{-1} DA^{-1} \\ &= -[(C^{-1}+DA^{-1}B)B^{-1}A]^{-1} DA^{-1} \\ &= -A^{-1}B(C^{-1}+DA^{-1}B)^{-1} DA^{-1} \\ \end{aligned} X=(A+BCD)1BCDA1=[BC(C1B1A+D)]1BCDA1=(C1B1A+D)1(BC)1BCDA1=(C1B1A+D)1DA1=[(C1+DA1B)B1A]1DA1=A1B(C1+DA1B)1DA1

⇓ 代入 \Downarrow \text{代入} 代入

( A + B C D ) − 1 = A − 1 − A − 1 B ( C − 1 + D A − 1 B ) − 1 D A − 1 \begin{aligned} (A+BCD)^{-1} &= A^{-1} - A^{-1}B(C^{-1}+DA^{-1}B)^{-1} DA^{-1} \end{aligned} (A+BCD)1=A1A1B(C1+DA1B)1DA1

  记住这种表示方式: ( A + B C D ) − 1 = A − 1 + X \begin{aligned} (A+BCD)^{-1} &= A^{-1} + X \end{aligned} (A+BCD)1=A1+X,这样只需求解 X X X便可推导出结论。
  提取相同矩阵时,为了便于理解也可以一个一个往外提取。
  另外可以这样记忆第二项:

A − 1 B A^{-1}B A1B ( C − 1 C^{-1} C1 + D A − 1 B ) − 1 D A − 1 +DA^{-1}B)^{-1} DA^{-1} +DA1B)1DA1

A − 1 B A^{-1}B A1B ( C − 1 + D (C^{-1}+D (C1+D A − 1 B A^{-1}B A1B ) − 1 D A − 1 )^{-1} DA^{-1} )1DA1

A − 1 B ( C − 1 + A^{-1}B (C^{-1} + A1B(C1+ D A − 1 DA^{-1} DA1 B ) − 1 B)^{-1} B)1 D A − 1 DA^{-1} DA1

  如果对类似的形式推导求逆引理,例如 ( A − B C − 1 D ) − 1 (A-BC^{-1}D)^{-1} (ABC1D)1,可以类比得到:

( A − B C − 1 D ) − 1 = A − 1 + A − 1 B ( C − D A − 1 B ) − 1 D A − 1 (A-BC^{-1}D)^{-1} = A^{-1} + A^{-1}B(C-DA^{-1}B)^{-1} DA^{-1} (ABC1D)1=A1+A1B(CDA1B)1DA1

  用同样的方法也可求得:

( A + B C T ) − 1 = A − 1 − A − 1 B ( I + C T A − 1 B ) − 1 C T A − 1 (A+BC^T)^{-1} = A^{-1} - A^{-1}B(I+C^TA^{-1}B)^{-1} C^TA^{-1} (A+BCT)1=A1A1B(I+CTA1B)1CTA1


参考:

矩阵求逆引理(matrix inversion lemma)

  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值