【技术解密】Transformer架构的演变:从BERT到GPT-4

目录

  1. 引言
  2. 理解Transformer:核心架构与机制
  3. BERT:双向上下文表示的突破
  4. GPT:从语言建模到少样本学习
  5. T5和BART:统一且灵活的架构
  6. GPT-4:语言模型的最新突破
  7. 模型比较分析
  8. Transformer模型的应用场景
  9. 模型的挑战与未来发展
  10. 结论
  11. 参考文献

在这里插入图片描述

引言

Transformer架构的出现彻底改变了自然语言处理(NLP)的格局。基于Transformer的BERT、GPT、T5和BART等模型,每个都在技术发展中发挥了重要作用。尽管这些架构基于相同的基本原理,它们在训练目标、架构设计、以及实际应用领域各自独具特色。本文将回顾Transformer架构的演变,从BERT的诞生到GPT-4的突破,详细探讨各个模型的创新与进展,并分析其在实际应用中的表现与潜力。

1. 理解Transformerÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海棠AI实验室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值