目录
- 引言
- 理解Transformer:核心架构与机制
- BERT:双向上下文表示的突破
- GPT:从语言建模到少样本学习
- T5和BART:统一且灵活的架构
- GPT-4:语言模型的最新突破
- 模型比较分析
- Transformer模型的应用场景
- 模型的挑战与未来发展
- 结论
- 参考文献
引言
Transformer架构的出现彻底改变了自然语言处理(NLP)的格局。基于Transformer的BERT、GPT、T5和BART等模型,每个都在技术发展中发挥了重要作用。尽管这些架构基于相同的基本原理,它们在训练目标、架构设计、以及实际应用领域各自独具特色。本文将回顾Transformer架构的演变,从BERT的诞生到GPT-4的突破,详细探讨各个模型的创新与进展,并分析其在实际应用中的表现与潜力。