【概率论】随机变量及其分布

离散型随机变量

一、定义

当随机变量的取值为有限个或者可列无限多个,这种随机变量称为离散型随机变量

二、性质

  • p i ≥ 0 , i = 1 , 2 , ⋯ p_{i}\geq 0,\quad i=1,2,\cdots pi0,i=1,2,
  • 规范形: ∑ i = 1 ∞ p i = 1 \sum\limits^{\infty}_{i=1}p_{i}=1 i=1pi=1

三、表示方法

  • P { X = x i } = p i , i = 1 , 2 , ⋯ P\{X=x_{i}\}=p_{i},\quad i=1,2,\cdots P{ X=xi}=pi,i=1,2,
  • 列表法

四、三种重要的离散型随机变量

1. 0 − 1 0-1 01分布

设随机变量 X X X只可能取 0 0 0 1 1 1两个值,它的分布律为 P { X = 1 } = p , P { X = 0 } = 1 − p P\{X=1\}=p,P\{X=0\}=1-p P{ X=1}=p,P{ X=0}=1p

2. 二项分布

如果随机变量 X X X的分布律为 P { X = k } = C n k p k q n − k , k = 0 , 1 , 2 , ⋯   , n P\{X=k\}=C^{k}_{n}p^{k}q^{n-k},k=0,1,2,\cdots,n P{ X=k}=Cnkpkqnk,k=0,1,2,,n,其中 0 < p < 1 , q = 1 − p 0<p<1,q=1-p 0<p<1,q=1p,则称 X X X服从于参数为 n , p n,p n,p的二项分布,记作 X ∼ B ( n , p ) X\sim B(n,p) XB(n,p)

3. 泊松分布

如果随机变量 X X X的分布律为 P { X = k } = λ k k ! e − λ , k = 0 , 1 , 2 , ⋯ P\{X=k\}=\frac{\lambda^{k}}{k!}e^{-\lambda},k=0,1,2,\cdots P{ X=k}=k!λkeλ,k=0,1,2,,其中 λ > 0 \lambda>0 λ>0为常数,则称随机变量 X X X服从参数为 λ \lambda λ的泊松分布,记为 X ∼ P ( λ ) X\sim P(\lambda) XP(λ)

随机变量的分布函数

一、定义

X X X是一个随机变量&#x

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值