【线性代数基础进阶】向量-part2

线性相关

定义:对 m m m n n n维向量 α 1 , α 2 , ⋯   , α m \alpha_{1},\alpha_{2},\cdots,\alpha_{m} α1,α2,,αm,若存在不全为 0 0 0的实数 k 1 , k 2 , ⋯   , k m k_{1},k_{2},\cdots,k_{m} k1,k2,,km使
k 1 α 1 + k 2 α 2 + ⋯ + k m α m = 0 k_{1}\alpha_{1}+k_{2}\alpha_{2}+\cdots+k_{m}\alpha_{m}=0 k1α1+k2α2++kmαm=0
成立,则其向量组 α 1 , α 2 , ⋯   , α m \alpha_{1},\alpha_{2},\cdots,\alpha_{m} α1,α2,,αm线性相关,否则称其线性无关

例:判断向量组 α 1 = ( 1 , 2 , − 1 , 4 ) T , α 2 = ( 0 , − 1 , − 5 , 3 ) T , α 3 = ( 2 , 5 , 3 , 5 ) T \alpha_{1}=(1,2,-1,4)^{T},\alpha_{2}=(0,-1,-5,3)^{T},\alpha_{3}=(2,5,3,5)^{T} α1=(1,2,1,4)T,α2=(0,1,5,3)T,α3=(2,5,3,5)T的线性相关性

x 1 α 1 + x 2 α 2 + x 3 α 3 = 0 x_{1}\alpha_{1}+x_{2}\alpha_{2}+x_{3}\alpha_{3}=0 x1α1+x2α2+x3α3=0,即
x 1 ( 1 2 − 1 4 ) + x 2 ( 0 − 1 − 5 3 ) + x 3 ( 2 5 3 5 ) = ( 0 0 0 0 ) x_{1}\begin{pmatrix} 1 \\ 2 \\ -1 \\ 4 \end{pmatrix}+x_{2}\begin{pmatrix} 0 \\ -1 \\ -5 \\ 3 \end{pmatrix}+x_{3}\begin{pmatrix} 2 \\ 5 \\ 3 \\ 5 \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} x1 1214 +x2 0153 +x3 2535 = 0000
按分量写出
{ x 1 + 2 x 3 = 0 2 x 1 − x 2 + 5 x 3 = 0 − x 1 − 5 x 2 + 3 x 3 = 0 4 x 1 + 3 x 2 + 5 x 2 = 0 \begin{cases} x_{1}+2x_{3}=0 \\ 2x_{1}-x_{2}+5x_{3}=0 \\ -x_{1}-5x_{2}+3x_{3}=0 \\ 4x_{1}+3x_{2}+5x_{2}=0 \end{cases} x1+2x3=02x1x2+5x3=0x15x2+3x3=04x1+3x2+5x2=0
写出系数矩阵
( 1 0 2 2 − 1 5 − 1 − 5 3 4 3 5 ) → ( 1 0 2 0 1 − 1 0 0 0 0 0 0 ) \begin{pmatrix} 1 & 0 & 2 \\ 2 & -1 & 5 \\ -1 & -5 & 3 \\ 4 & 3 & 5 \end{pmatrix}\rightarrow \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} 121401532535 100001002100
同解方程组
{ x 1 + 2 x 3 = 0 x 2 − x 3 = 0 \begin{cases} x_{1}+2x_{3}=0 \\ x_{2}-x_{3}=0 \end{cases} { x1+2x3=0x2x3=0
有非零解

定理:向量组 α 1 , α 2 , ⋯   , α m \alpha_{1},\alpha_{2},\cdots,\alpha_{m} α1,α2,,αm线性相关
⇔ \Leftrightarrow 存在不全为 0 0 0 k 1 , k 2 , ⋯   , k m k_{1},k_{2},\cdots,k_{m} k1,k2,,km,使
k 1 α 1 + k 2 α 2 + ⋯ + k m α m = 0 k_{1}\alpha_{1}+k_{2}\alpha_{2}+\cdots+k_{m}\alpha_{m}=0 k1α1+k2α2++kmαm=0
⇔ \Leftrightarrow 存在不全为 0 0 0 k 1 , k 2 , ⋯   , k m k_{1},k_{2},\cdots,k_{m} k1,k2,,km,使
( α 1 α 2 ⋯ α m ) ( k 1 k 2 ⋮ k m ) = 0 \begin{pmatrix} \alpha_{1} & \alpha_{2} & \cdots & \alpha_{m} \end{pmatrix}\begin{pmatrix} k_{1} \\ k_{2} \\ \vdots \\ k_{m} \end{pmatrix}=0 (α1α2αm) k1k2km =0
⇔ \Leftrightarrow 齐次方程组有非零解
( α 1 α 2 ⋯ α m ) ( x 1 x 2 ⋮ x m ) = 0 \begin{pmatrix} \alpha_{1} & \alpha_{2} & \cdots & \alpha_{m} \end{pmatrix}\begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{m} \end{pmatrix}=0 (α1α2αm) x1x2xm =0
⇔ r ( α 1 α 2 ⋯ α m ) < m \Leftrightarrow r \begin{pmatrix}\alpha_{1} & \alpha_{2} & \cdots & \alpha_{m}\end{pmatrix}<m r(α1α2αm)<m m m m为未知数的个数

推论:

  1. n n n n n n维向量 α 1 , α 2 , ⋯   , α m \alpha_{1},\alpha_{2},\cdots,\alpha_{m} α1,α2,,αm线性相关 ⇔ ∣ α 1 α 2 ⋯ α m ∣ = 0 \Leftrightarrow \begin{vmatrix}\alpha_{1}&\alpha_{2}&\cdots&\alpha_{m}\end{vmatrix}=0 α1α2αm =0
  2. n + 1 n+1 n+1 n n n维向量必线性相关

例: A = ( 1 2 −

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值