【线性代数基础进阶】向量-part1

本文详细介绍了n维向量的概念,包括向量的定义、零向量、分量以及向量的加法和标量乘法。接着探讨了向量的运算规律,解方程组的方法,以及线性表出的概念。文中通过实例展示了如何使用初等行变换解线性方程组,并解释了向量线性表示的条件。
摘要由CSDN通过智能技术生成


n n n维向量

n n n个数 a 1 , a 2 , ⋯   , a n a_{1},a_{2},\cdots,a_{n} a1,a2,,an构成的有序数组称为 n n n维向量

( a 1 a 2 ⋮ a n ) \begin{pmatrix}a_{1} \\ a_{2} \\ \vdots \\ a_{n}\end{pmatrix} a1a2an ( a 1 a 2 ⋯ a n ) T \begin{pmatrix}a_{1} & a_{2} & \cdots & a_{n}\end{pmatrix}^{T} (a1a2an)T列向量
( a 1 a 2 ⋯ a n ) \begin{pmatrix}a_{1} & a_{2} & \cdots & a_{n}\end{pmatrix} (a1a2an)行向量
其中 a i a_{i} ai称为向量的第 i i i个分量 ( i = 1 , 2 , ⋯   , n ) (i=1,2,\cdots,n) (i=1,2,,n)

如果向量的所有分量都是 0 0 0,就称其为零向量,记作 O = ( 0 , 0 , ⋯   , 0 ) T O=(0,0,\cdots,0)^{T} O=(0,0,,0)T

n n n维向量 α = ( a 1 , a 2 , ⋯   , a n ) T , β = ( b 1 , b 2 , ⋯   , b n ) T \alpha=(a_{1},a_{2},\cdots,a_{n})^{T},\beta=(b_{1},b_{2},\cdots,b_{n})^{T} α=(a1,a2,,an)T,β=(b1,b2,,bn)T

  • α = β ⇔ a 1 = b 1 , a 2 = b 2 , ⋯   , a n = b n \alpha=\beta\Leftrightarrow a_{1}=b_{1},a_{2}=b_{2},\cdots,a_{n}=b_{n} α=βa1=b1,a2=b2,,an=bn
  • α + β = ( a 1 + b 1 , a 2 + b 2 , ⋯   , a n + b n ) T \alpha+\beta=(a_{1}+b_{1},a_{2}+b_{2},\cdots,a_{n}+b_{n})^{T} α+β=(a1+b1,a2+b2,,an+bn)T
  • k α = ( k a 1 , k a 2 , ⋯   , k a n ) T k \alpha=(ka_{1},ka_{2},\cdots,ka_{n})^{T} kα=(ka1,ka2,,kan)T
    特别的, 0 α = ( 0 , 0 , ⋯   , 0 ) T 0\alpha=(0,0,\cdots,0)^{T} 0α=(0,0,,0)T

运算规律

α + β = β + α \alpha+\beta=\beta+\alpha α+β=β+α
( α + β ) + γ = α + ( β + γ ) (\alpha+\beta)+\gamma=\alpha+(\beta+\gamma) (α+β)+γ=α+(β+γ)
α + 0 = α \alpha+0=\alpha α+0=α
α + ( − α ) = 0 \alpha+(-\alpha)=0 α+(α)=0
1 ⋅ α = α 1\cdot \alpha=\alpha 1α=α
k ( l α ) = ( k l ) α k(l \alpha)=(kl)\alpha k(lα)=(kl)α
k ( α + β ) = k α + k β k(\alpha+\beta)=k \alpha+k \beta k(α+β)=kα+kβ
( k + l ) α = k α + l α (k+l)\alpha=k \alpha+l \alpha (k+l)α=kα+lα

解方程组

例: { x 1 + x 2 + x 3 = 5 3 x 1 + 2 x 2 + x 3 = 15 x 2 + 2 x 3 = 2 \begin{cases}x_{1}+x_{2}+x_{3}=5 \\3x_{1}+2x_{2}+x_{3}=15\\x_{2}+2x_{3}=2\end{cases} x1+x2+x3=53x1+2x2+x3=15x2+2x3=2

对增广矩阵作初等行变换
A ˉ = ( 1 1 1 5 3 2 1 13 0 1 2 2 ) → ( 1 1 1 5 0 − 1 − 2 − 2 0 1 2 2 ) → ( 1 1 1 5 0 1 2 2 0 0 0 0 ) → ( 1 0 − 1 3 0 1 2 2 0 0 0 0 ) \begin{aligned} \bar{A}&=\begin{pmatrix} 1 & 1 & 1 & 5 \\ 3 & 2 & 1 & 13 \\ 0 & 1 & 2 & 2 \end{pmatrix}\rightarrow \begin{pmatrix} 1 & 1 & 1 & 5 \\ 0 & -1 & -2 & -2 \\ 0 & 1 & 2 & 2 \end{pmatrix}\\ &\rightarrow \begin{pmatrix} 1 & 1 & 1 & 5 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}\rightarrow \begin{pmatrix} 1 & 0 & -1 & 3 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \end{aligned} Aˉ= 1301211125132 100111122522 100110120520 100010120320
同解方程组为
{ x 1 − x 3 = 3 x 2 + 2 x 3 = 2 \begin{cases} x_{1}-x_{3}=3 \\ x_{2}+2x_{3}=2 \end{cases} { x1x3=3x2+2x3=2
∀ x 3 = t \forall x_{3}=t x3=t,方程组有 ∞ \infty
{ x 1 = 3 + t x 2 = 2 − 2 t x 3 = t 或 ( x 1 x 2 x 3 ) = ( 3 2 0 ) + t ( 1 − 2 1 ) \begin{cases} x_{1}=3+t \\ x_{2}=2-2t \\ x_{3}=t \end{cases}或\begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}=\begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix}+t \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} x1=3+tx2=22tx3=t x1x2x3 = 320 +t 121

x 3 = 0 ⇒ x 1 = 3 , x 2 = 2 x_{3}=0\Rightarrow x_{1}=3,x_{2}=2 x3=0x1=3,x2=2
特解
α = ( 3 , 2 , 0 ) \alpha=(3,2,0) α=(3,2,0)
x 3 = 1 ⇒ x 1 = 1 , x 2 = − 2 x_{3}=1\Rightarrow x_{1}=1,x_{2}=-2 x3=1x1=1,x2=2
基础解系
η = ( 1 , − 2 , 1 ) T \eta=(1,-2,1)^{T} η=(1,2,1)T
因此 x = α + k η = ( 3 2 0 ) + k ( 1 − 2 1 ) x=\alpha+k \eta=\begin{pmatrix}3 \\ 2 \\ 0\end{pmatrix}+k \begin{pmatrix}1 \\ -2 \\ 1\end{pmatrix} x=α+kη=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值