【线性代数基础进阶】特征值和特征向量

本文详细介绍了线性代数中的特征值和特征向量概念,包括它们的定义、性质和求解方法。通过具体的矩阵示例,展示了如何求解特征值和特征向量,并探讨了实对称矩阵与正交矩阵的相关性质,以及如何通过正交矩阵对实对称矩阵进行对角化。内容覆盖了相似矩阵、实对称矩阵的特征向量正交性以及实对称矩阵的对角化过程,是线性代数进阶学习的重要参考资料。
摘要由CSDN通过智能技术生成

特征值、特征向量

定义:设 A A A n n n阶矩阵, α \alpha α n n n维非 0 0 0列向量,且
A α = λ α A \alpha=\lambda \alpha Aα=λα
则称 λ \lambda λ是矩阵 A A A的特征值, α \alpha α是矩阵 A A A对应于特征值 λ \lambda λ的特征向量

A α = λ α , α ≠ 0 ⇒ ( λ E − A ) α = 0 , ( λ E − A ) x = 0 ⇒ α A \alpha=\lambda \alpha,\alpha\ne0\Rightarrow (\lambda E-A)\alpha=0,(\lambda E-A)x=0\Rightarrow \alpha Aα=λα,α=0(λEA)α=0,(λEA)x=0α是齐次方程组 ( λ E − A ) x = 0 (\lambda E-A)x=0 (λEA)x=0的非 0 0 0

  1. ∣ λ E − A ∣ = 0 |\lambda E-A|=0 λEA=0求特征值 λ i \lambda_{i} λi,共 n n n个(含重根)
  2. ( λ i E − A ) x = 0 (\lambda_{i}E-A)x=0 (λiEA)x=0,求基础解系,即特征值 λ i \lambda_{i} λi的线性无关的特征向量,写通解得 λ i \lambda_{i} λi所有的特征向量

定理:如果 α 1 , α 2 \alpha_{1},\alpha_{2} α1,α2都是矩阵 A A A对应于特征值 λ \lambda λ的特征向量,则当 k 1 α 1 + k 2 α 2 ≠ 0 k_{1}\alpha_{1}+k_{2}\alpha_{2}\ne0 k1α1+k2α2=0时, k 1 α 1 + k 2 α 2 k_{1}\alpha_{1}+k_{2}\alpha_{2} k1α1+k2α2仍是矩阵 A A A关于特征值 λ \lambda λ的特征向量

定理:如果 λ 1 \lambda_{1} λ1 λ 2 \lambda_{2} λ2 A A A不同的特征值,对应的特征向量分别是 α 1 \alpha_{1} α1 α 2 \alpha_{2} α2,则 α 1 , α 2 \alpha_{1},\alpha_{2} α1,α2必定线性无关

定理:设 A A A n n n阶矩阵,特征值是 λ 1 , λ 2 , ⋯   , λ n \lambda_{1},\lambda_{2},\cdots,\lambda_{n} λ1,λ2,,λn,则有

  • ∑ λ i = ∑ a i i \sum\limits \lambda_{i}=\sum\limits a_{ii} λi=aii
  • ∣ A ∣ = ∏ λ i |A|=\prod \lambda_{i} A=λi

例:求 A = ( 17 − 2 − 2 − 2 14 − 4 − 2 − 4 14 ) A=\begin{pmatrix}17 & -2 & -2 \\ -2 & 14 & -4 \\ -2 & -4 & 14\end{pmatrix} A= 172221442414 特征值,特征向量

三阶行列式主对角线元素都含有未知数,直接展开要解三次方程,一般考虑通过行列加减,找出某一行或某一列所有的元素都含有含未知数的公因式或 0 0 0

A A A的特征多项式
∣ λ E − A ∣ = ∣ λ − 17 2 2 2 λ − 14 4 2 4 λ − 14 ∣ = ∣ λ − 17 2 2 2 λ − 14 4 0 18 − λ λ − 18 ∣ = ∣ λ − 17 4 2 2 λ − 10 4 0 0 λ − 18 ∣ = ( λ − 18 ) ∣ λ − 17 4 2 λ − 10 ∣ = ( λ − 18 ) ( λ 2 − 27 λ + 162 ) = ( λ − 18 ) 2 ( λ − 9 ) \begin{aligned} |\lambda E-A|&=\begin{vmatrix} \lambda-17 & 2 & 2 \\ 2 & \lambda-14 & 4 \\ 2 & 4 & \lambda-14 \end{vmatrix}=\begin{vmatrix} \lambda-17&2&2\\2&\lambda-14&4\\0&18-\lambda&\lambda-18 \end{vmatrix}\\ &=\begin{vmatrix} \lambda-17&4&2\\2&\lambda-10&4\\0&0&\lambda-18 \end{vmatrix}=(\lambda-18)\begin{vmatrix} \lambda-17&4\\2&\lambda-10 \end{vmatrix}\\ &=(\lambda-18)(\lambda^{2}-27\lambda+162)=(\lambda-18)^{2}(\lambda-9) \end{aligned} λEA= λ17222λ14424λ14 = λ17202λ1418λ24λ18 = λ17204λ10024λ18 =(λ18) λ1724λ10 =(λ18)(λ227λ+162)=(λ18)2(λ9)
因此 λ 1 = λ 2 = 18 , λ 3 = 9 \lambda_{1}=\lambda_{2}=18,\lambda_{3}=9 λ1=λ2=18,λ3=9
λ = 18 \lambda=18 λ=18时, ( 18 E − A ) x = 0 (18E-A)x=0 (18EA)x=0
( 1 2 2 2 4 4 2 4 4 ) → ( 1 2 2 0 0 0 0 0 0 ) \begin{aligned} \begin{pmatrix} 1 & 2 & 2 \\ 2 & 4 & 4 \\ 2 & 4 & 4 \end{pmatrix}\rightarrow \begin{pmatrix} 1 & 2 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \end{aligned} 122244244 100200200
得基础解系: α 1 = ( − 2 , 1 , 0 ) T , α 2 = ( − 2 , 0 , 1 ) T \alpha_{1}=(-2,1,0)^{T},\alpha_{2}=(-2,0,1)^{T} α1=(2,1,0)T,α2=(2,0,1)T,因此特征向量 k 1 α 1 + k 2 α 2 , k 1 , k 2 k_{1}\alpha_{1}+k_{2}\alpha_{2},k_{1},k_{2} k1α1+k2α2,k1,k2不同时为 0 0 0
λ = 9 \lambda=9 λ=9时, ( 9 E − A ) x = 0 (9E-A)x=0 (9EA)x=0
( − 8 2 2 2 − 5 4 2 4 − 5 ) → ( 2 0 − 1 0 1 − 1 0 0 0 ) \begin{pmatrix} -8 & 2 & 2 \\ 2 & -5 & 4 \\ 2 & 4 & -5 \end{pmatrix}\rightarrow \begin{pmatrix} 2 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} 822254245 200010110
得基础解系 α 3 = ( 1 , 2 , 2 ) T \alpha_{3}=(1,2,2)^{T} α3=(1,2,2)T,因此特征向量 k 3 α 3 , k 3 ≠ 0 k_{3}\alpha_{3},k_{3}\ne0 k3α3,k3=0

对于一个矩阵若,秩等于 1 1 1即存在一行能表示其他所有行,秩等于 2 2 2即存在两行能表示其他所有行,之后同理,类似最大线性无关组

( − 8 2 2 2 − 5 4 2 4 − 5 ) \begin{pmatrix}-8 & 2 & 2 \\ 2 & -5 & 4 \\ 2 & 4 & -5\end{pmatrix} 822254245 求基础解系,本题题解省略的化简步骤,其实化简步骤并不容易,但此处可以用其他思路。
由于已知 ∣ λ E − A ∣ = 0 |\lambda E-A|=0 λEA=0,即该矩阵的秩一定小于 3 3 3;随便选两行,这里选二三行,发现二者线性无关(不成比例),因此该矩阵秩大于 1 1 1,可得该矩阵秩为 2 2 2
由于这两行能线性表示另一行,因此可以构造新的矩阵
( 2 − 5 4 2 4 − 5 0 0 0 ) \begin{pmatrix}2 & -5 & 4 \\ 2 & 4 & -5 \\ 0 & 0 & 0\end{pmatrix} 220540450
可以理解为由于这两行能线性表示另一行,因此另一行一定能被全消为 0 0 0
此时只需对新的矩阵行化简即可

A α = λ α , α ≠ 0 A \alpha=\lambda \alpha,\alpha\ne0 Aα=λα,α=0,则有

  • ( A + k E ) α = ( λ + k ) α (A+kE)\alpha=(\lambda+k)\alpha (A+kE)α=(λ+k)α
  • A n α = λ n α A^{n}\alpha=\lambda^{n}\alpha Anα=λnα

例: A A A 3 3 3阶矩阵,特征值是 − 1 , 0 , 4 -1,0,4 1,0,4,如果 A + B = 2 E A+B=2E A+B=2E,则 B B B的特征值为()

A α = λ α , α ≠ 0 A \alpha=\lambda \alpha,\alpha\ne0 Aα=λα,α=0
A + B = 2 E A+B=2E A+B=2E,有 B = 2 E − A B=2E-A B=2EA,则
B α = ( 2 E − A ) α = 2 α − A α = ( 2 − λ ) α B \alpha=(2E-A)\alpha=2\alpha-A \alpha=(2-\lambda)\alpha Bα=(2EA)α=2αAα=(2λ)α
因此 B B B的特征值为 3 , 2 , − 2 3,2,-2 3,2,2

例: A A A 3 3 3阶矩阵, A 2 + 2 A − 3 E = 0 A^{2}+2A-3E=0 A2+2A3E=0,证明矩阵 A A A的特征值只能是 1 1 1 − 3 -3 3

λ \lambda λ A A A的任一特征值,对应的特征向量是 α \alpha α,即 A α = λ α , α ≠ 0 A \alpha=\lambda \alpha,\alpha\ne0 Aα=λα,α=0,那么
A 2 α = λ 2 α A^{2}\alpha=\lambda^{2} \alpha A2α=λ2α
A 2 + 2 A − 3 E = 0 A^{2}+2A-3E=0 A2+2A3E=0

A 2 α + 2 A α − 3 α = 0 ( λ 2 + 2 λ − 3 ) α = 0 , α ≠ 0 λ 2 + 2 λ

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值