【线性代数基础进阶】特征值和特征向量-补充+练习

本文详细介绍了线性代数中的特征值和特征向量概念,包括特征多项式、特征方程以及矩阵的相似对角化。还探讨了特征值为多重根时特征向量的线性相关性,并通过实例解析了如何求解矩阵的特征值和特征向量。此外,文章还涉及了施密特正交化过程及其在求解正交特征向量中的应用。
摘要由CSDN通过智能技术生成

特征值、特征向量

定义:设 A = ( a i j ) A=(a_{ij}) A=(aij)为一个 n n n阶矩阵,则行列式
∣ λ E − A ∣ = ∣ λ − a 11 − a 12 ⋯ − a 1 n − a 21 λ − a 22 ⋯ − a 2 n ⋮ ⋮ ⋮ − a n 1 − a n 2 ⋯ λ − a n n ∣ |\lambda E-A|=\begin{vmatrix} \lambda-a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda-a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda-a_{nn} \end{vmatrix} λEA= λa11a21an1a12λa22an2a1na2nλann
称为矩阵 A A A的特征多项式, ∣ λ E − A ∣ = 0 |\lambda E-A|=0 λEA=0称为 A A A的特征方程

当特征值是二重根时,有可能只有一个线性无关的特征向量,也有可能有两个线性无关的特征向量,这一点在后面的相似对角化问题上是重要的

再解释一下之前的例题
例: A A A 3 3 3阶矩阵,特征值是 − 1 , 0 , 4 -1,0,4 1,0,4,如果 A + B = 2 E A+B=2E A+B=2E,则 B B B的特征值为()

由于 A A A的特征值是 − 1 , 0 , 4 -1,0,4 1,0,4,则有
∣ λ 1 E − A ∣ = 0 的解为 λ 1 = − 1 , 0 , 4 |\lambda_{1} E-A|=0的解为 \lambda_{1}=-1,0,4 λ1EA=0的解为λ1=1,0,4
因此对于 B B B,有特征方程
∣ λ 2 E − B ∣ = 0 ∣ λ 2 E − 2 E + A ∣ = 0 ∣ A − ( 2 − λ 2 ) E ∣ = 0 \begin{aligned} |\lambda_{2} E-B|&=0\\ |\lambda_{2} E-2E+A|&=0\\ |A-(2-\lambda_{2})E|&=0\\ \end{aligned} λ2EBλ2E2E+AA(2λ2)E=0=0=0

注意 ∣ λ E − A ∣ = 0 |\lambda E-A|=0 λEA=0 ∣ A − λ E ∣ = 0 |A-\lambda E|=0 AλE=0的解是相同的,只是由定义 A α = λ α A \alpha=\lambda \alpha Aα=λα移项方向不同导致的

都看做 A A A的特征方程,则有
λ 1 = 2 − λ 2 \lambda_{1}=2-\lambda_{2} λ1=2λ2
因此 λ 2 = 3 , 2 , − 2 \lambda_{2}=3,2,-2 λ2=3,2,2,即 B B B的特征值为 3 , 2 , − 2 3,2,-2 3,2,2

如果一个矩阵可逆,则特征值全都不为 0 0 0,若有一个为 0 0 0则矩阵不可逆
依据: ∣ A ∣ = ∏ λ i |A|=\prod \lambda_{i} A=λi

例:已知三阶矩阵 A A A的特征值是 1 , − 1 , 2 1,-1,2 1,1,2,证明 A + E A+E A+E不可逆, A + 2 E A+2E A+2E可逆

A A A的特征值是 1 , − 1 , − 2 1,-1,-2 1,1,2,可知 A + E A+E A+E的特征值为 2 , 0 , 3 2,0,3 2,0,3,则有
∣ A + E ∣ = 2 × 0 × − 1 = 0 |A+E|=2\times 0\times -1=0 A+E=2×0×1=0
A + E A+E A+E不可逆。同理 A + 2 E A+2E A+2E的特征值为 3 , 1 , 4 3,1,4 3,1,4,则有
∣ A + 2 E ∣ = 3 × 1 × 4 = 12 ≠ 0 |A+2E|=3\times 1\times 4=12\ne 0 A+2E=3×1×4=12=0
A + 2 E A+2E A+2E可逆

此结论未经过验证,请不要随意使用
已知 A A A的特征值为 λ 1 , λ 2 , ⋯   , λ n \lambda_{1},\lambda_{2},\cdots,\lambda_{n} λ1,λ2,,λn,有关系 B = A + α E B=A+\alpha E B=A+αE,则 B B B的特征值为 λ 1 + α , λ 2 + α , ⋯   , λ n + α \lambda_{1}+\alpha,\lambda_{2}+\alpha,\cdots,\lambda_{n}+\alpha λ1+α,λ2+α,,λn+α

证明:
A A A,有
∣ λ k E − A ∣ = 0 的解为 λ 1 , λ 2 , ⋯   , λ n |\lambda_{k} E-A|=0的解为\lambda_{1},\lambda_{2},\cdots,\lambda_{n} λkEA=0的解为λ1,λ2,,λn
B B B,有
∣ λ q E − B ∣ = ∣ λ q E − A − α E ∣ = ∣ ( λ q − α ) E − A ∣ = 0 \begin{aligned} |\lambda_{q} E-B|&=|\lambda_{q} E-A-\alpha E|\\ &=|(\lambda_{q}-\alpha)E-A|=0 \end{aligned}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值