更660了,但会更得比较慢,重心还是在【概率论基础进阶】上
279范德蒙行列式
∣ 1 2 3 4 1 2 2 3 2 4 2 1 2 3 3 3 4 3 9 8 7 6 ∣ = ( ) \begin{vmatrix}1 & 2 & 3 & 4 \\ 1 & 2^{2} & 3^{2} & 4^{2} \\ 1 & 2^{3} & 3^{3} & 4^{3} \\ 9 & 8 & 7 & 6\end{vmatrix}=() ∣ ∣1119222238332337442436∣ ∣=()
如果确定了题目使用范德蒙行列式公式,一定不要忘记构造全 1 1 1的行
D = 10 ∣ 1 2 3 4 1 2 2 3 2 4 2 1 2 3 3 3 4 3 1 1 1 1 ∣ = − 10 ∣ 1 1 1 1 1 2 3 4 1 2 2 3 2 4 2 1 2 3 3 3 4 3 ∣ = − 10 ( 2 − 1 ) ( 3 − 1 ) ( 3 − 2 ) ( 4 − 1 ) ( 4 − 2 ) ( 4 − 3 ) = − 120 \begin{aligned} D&=10\begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 2^{2} & 3^{2} & 4^{2} \\ 1 & 2^{3} & 3^{3} & 4^{3} \\1 & 1 & 1 & 1 \end{vmatrix}=-10 \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 2^{2} & 3^{2} & 4^{2} \\ 1 & 2^{3} & 3^{3} & 4^{3} \end{vmatrix}\\ &=-10(2-1)(3-1)(3-2)(4-1)(4-2)(4-3)\\ &=-120 \end{aligned} D=10∣ ∣1111222231332331442431∣ ∣=−10∣ ∣1111122223133233144243∣ ∣=−10(2−1)(3−1)(3−2)(4−1)(4−2)(4−3)=−120
此处 10 ∣ 1 2 3 4 1 2 2 3 2 4 2 1 2 3 3 3 4 3 1 1 1 1 ∣ = − 10 ∣ 1 1 1 1 1 2 3 4 1 2 2 3 2 4 2 1 2 3 3 3 4 3 ∣ 10\begin{vmatrix}1 & 2 & 3 & 4 \\ 1 & 2^{2} & 3^{2} & 4^{2} \\ 1 & 2^{3} & 3^{3} & 4^{3} \\1 & 1 & 1 & 1\end{vmatrix}=-10 \begin{vmatrix}1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 2^{2} & 3^{2} & 4^{2} \\ 1 & 2^{3} & 3^{3} & 4^{3}\end{vmatrix} 10∣ ∣1111222231332331442431∣ ∣=−10∣ ∣1111122223133233144243∣ ∣,并不是 1 , 4 1,4 1,4行直接互换,而是逐行互换到第 1 1 1行
281爪型行列式
一般的,我们要求爪型行列式形如
∣ x 1 a 2 a 3 a 4 a 1 x 2 a 3 a 4 a 1 a 2 x 3 a 4 a 1 a 2 a 3 x 4 ∣ \begin{vmatrix}x_{1} & a_{2} & a_{3} & a_{4} \\ a_{1} & x_{2} & a_{3} & a_{4} \\ a_{1} & a_{2} & x_{3} & a_{4} \\ a_{1} & a_{2} & a_{3} & x_{4}\end{vmatrix} ∣ ∣x1a1a1a1a2x2a2a2a3a3x3

本文介绍了线性代数中范德蒙行列式、爪型行列式、行列式之和以及方阵行列式的计算方法和性质。通过具体的例子和公式推导,展示了行列式在解决矩阵问题中的应用。
最低0.47元/天 解锁文章
5866

被折叠的 条评论
为什么被折叠?



