【高等数学基础进阶】常微分方程-part1

文章目录

一、常微分方程的基本概念

定义:含有未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程,有时也简称方程

定义:微分方程中出现的未知函数的最高阶导数的阶数,叫做微分方程的阶

定义:找出这样的一个函数,把这个函数带入微分方程使该方程成为恒等式,这个函数就叫做微分方程的解

定义:如果微分方程的解中含有任意常数,且任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解。即几阶微分方程,通解中就会有几个任意常数

定义:由于通解中含有任意常数,为了确定任意常数的值,引入初值条件,例如:如果微分方程是一阶的,确定任意常数的条件是 y ∣ x = x 0 = y 0 y|_{x=x_0}=y_0 yx=x0=y0,如果微分方程是二阶的,确定任意常数的条件为 y ∣ x = x 0 = y 0 , y ′ ∣ x = x 0 = y 0 ′ y|_{x=x_0}=y_0,y'|_{x=x_0}=y'_0 yx=x0=y0,yx=x0=y0,其中 x 0 , y 0 , y 0 ′ x_0,y_0,y'_0 x0,y0,y0都是给定的值,上述条件即为初值条件,通过初值条件可以确定通解中的任意常数,所得到的就是微分方程的特解。由于几阶微分方程就含有几个任意常数,所以就需要知道几个初值条件

定义:微分方程的解对应的曲线就叫做微分方程的积分曲线

二、一阶线性微分方程

可分离变量的方程 y ′ = f ( x ) g ( x ) y'=f(x)g(x) y=f(x)g(x)

定义:如果一个一阶微分方程能写成 g ( y ) d y = f ( x ) d x g(y)dy=f(x)dx g(y)dy=f(x)dx的形式,也就是说,能把微分方程写成一端只含的函数和 d y dy dy,另一端只含 x x x的函数和 d x dx dx,那么原方程就称为可分离变量的微分方程

求解方法

  1. 将微分方程化为 g ( y ) d y = f ( x ) d x g(y)dy=f(x)dx g(y)dy=f(x)dx
  2. 将上式两端同时积分得 ∫ g ( y ) d t = ∫ f ( x ) d x \begin{aligned} \int g(y)dt=\int f(x)dx\end{aligned} g(y)dt=f(x)dx
  3. G ( x ) G(x) G(x) F ( x ) F(x) F(x)依次为 g ( y ) g(y) g(y) f ( x ) f(x) f(x)的原函数,得 G ( y ) = F ( x ) + C G(y)=F(x)+C G(y)=F(x)+C

齐次方程 d y d x = ϕ ( y x ) \frac{dy}{dx}=\phi (\frac{y}{x}) dxdy=ϕ(xy)

定义:如果一阶微分方程可以化为 d y d x = ϕ ( y x ) \frac{dy}{dx}=\phi (\frac yx) dxdy=ϕ(xy)的形式,那么就称该微分方程为齐次方程。

n n n次齐次函数,即 f ( t x , t y ) = t n f ( x , y ) f(tx,ty)=t^{n}f(x,y) f(tx,ty)=tnf(x,y)
显然本题所谓的齐次方程就是 0 0 0次齐次函数,因此叫齐次方程

求解方法

  1. 将原微分方程化为 d y d x = f ( y x ) \frac{dy}{dx}=f(\frac yx) dxdy=f(xy)的形式
  2. u ( x ) = y x u(x)=\frac yx u(x)=xy,则 y = u x y=ux y=ux d y d x = u + x d u d x \frac{dy}{dx}=u+x\frac{du}{dx} dxdy=u+xdxdu
  3. 原微分方程可化为 u + x d u d x = f ( u ) \begin{aligned} u+x\frac{du}{dx}=f(u)\end{aligned} u+xdxdu=f(u),将其分离变量得 d u f ( u ) − u = d x x \begin{aligned} \frac{du}{f(u)-u}=\frac{dx}{x}\end{aligned} f(u)udu=xdx,两边同时积分得 ∫ d u f ( u ) − u = ∫ d x x \begin{aligned} \int\frac{du}{f(u)-u}=\int\frac{dx}x\end{aligned} f(u)udu=xdx
  4. 求出积分之后,将 y x \frac yx xy代替 u u u,得到齐次方程的通解

线性方程 y ′ + P ( x ) y = Q ( x ) y'+P(x)y=Q(x) y+P(x)y=Q(x)

通解为
y = e − ∫ P ( x ) d x [ ∫ Q ( x ) e ∫ P ( x ) d x d x + C ] \begin{aligned} y=e^{-\int P(x)dx}\left[\int Q\left(x\right)e^{\int P(x)dx}dx+C\right]\end{aligned} y=eP(x)dx[Q(x)eP(x)dxdx+C]
在这里的如果有 ∫ p ( x ) d x = ∫ 1 x d x = ln ⁡ x \begin{aligned} \int_{}^{}p(x)dx=\int_{}^{} \frac{1}{x}dx=\ln x\end{aligned} p(x)dx=x1dx=lnx,可以不加绝对值

伯努利方程 y ′ + P ( x ) y = Q ( x ) y α ( α ≠ 1 ) y'+P(x)y=Q(x)y^{\alpha}(\alpha \ne 1) y+P(x)y=Q(x)yα(α=1)

求解方法及通解形式

  1. 将等式两端同除 y n y^n yn,得 y − n d y d x + P ( x ) y 1 − n = Q ( x ) (1) \begin{aligned} y^{-n}\frac{dy}{dx}+P(x)y^{1-n}=Q(x)\quad\text{(1)}\end{aligned} yndxdy+P(x)y1n=Q(x)(1)
  2. z = y 1 − n z=y^{1-n} z=y1n,那么 d z d x = ( 1 − n ) y − n d y d x \begin{aligned} \frac{dz}{dx}=(1-n)y^{-n}\frac{dy}{dx}\end{aligned} dxdz=(1n)yndxdy
  3. ( 1 − n ) (1-n) (1n)乘在(1)式两端,经过代换变成 d z d x + ( 1 − n ) P ( x ) z = ( 1 − n ) Q ( x ) \begin{aligned} \frac{dz}{dx}+(1-n)P(x)z=(1-n)Q(x)\end{aligned} dxdz+(1n)P(x)z=(1n)Q(x),解出方程的通解,再将 z z z y 1 − n y^{1-n} y1n代换,得到方程的通解

全微分方程 P ( x , y ) d x + Q ( x , y ) d y = 0 P(x,y)dx+Q(x,y)dy=0 P(x,y)dx+Q(x,y)dy=0

判定方法:
∂ P ∂ y = ∂ Q ∂ x \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x} yP=xQ

解法:
偏积分、凑微分、线积分

三、可降阶的高阶方程

y ( n ) = f ( x ) y^{(n)}=f(x) y(n)=f(x)

求解方法:
将微分方程 y ( n ) = f ( x ) y^{(n)}=f(x) y(n)=f(x)的两端同时 x x x积分得 y ( n − 1 ) = ∫ f ( x ) d x + C 1 y^{(n-1)}=\int f(x)dx+C_1 y(n1)=f(x)dx+C1,再对等式两边同时积分得 y ( n − 2 ) = ∫ [ ∫ f ( x ) d x + C 1 ] d x + C 2 y^{(n-2)}=\int[\int f(x)dx+C_1]dx+C_2 y(n2)=[f(x)dx+C1]dx+C2,连续积分 n n n次,得到方程含有 n n n个任意常数的通解

y ′ ′ = f ( x , y ′ ) y''=f(x,y') y′′=f(x,y)

求解方法

  1. y ′ = p y'=p y=p,则 y ′ ′ = d p d x = p ′ y''=\frac{dp}{dx}=p' y′′=dxdp=p
  2. 原微分方程变为 d p d x = f ( x , p ) \begin{aligned} \frac{dp}{dx}=f(x,p)\end{aligned} dxdp=f(x,p),解微分方程得 p = p ( x , C 1 ) p=p(x,C_1) p=p(x,C1)
  3. 由于 d y d x = p \frac{dy}{dx}=p dxdy=p,则 d y d x = p ( x ) \frac{dy}{dx}=p(x) dxdy=p(x),解得 y = ∫ p ( x , C 1 ) d x + C 2 y=\int p(x,C_1)dx+C_2 y=p(x,C1)dx+C2

y ′ ′ = f ( y , y ′ ) y''=f(y,y') y′′=f(y,y)

求解方法:

  1. y ′ = p y'=p y=p,则 y ′ ′ = d p d x = d p d y d y d x = p d p d y \begin{aligned} y''=\frac{dp}{dx}=\frac{dp}{dy}\frac{dy}{dx}=p\frac{dp}{dy}\end{aligned} y′′=dxdp
  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值