【高等数学基础进阶】常微分方程-part2

本文详细解析了常微分方程的求解方法,包括微分方程求解、综合题和应用题的典型例题,如特征方程、通解、特解的求法,并通过具体例子介绍了如何找到解的极值和极限,以及在实际问题中的应用,如面积计算和体积求解等。
摘要由CSDN通过智能技术生成

常考题型与典型例题

微分方程求解

例7:微分方程 x y ′ + y ( ln ⁡ x − ln ⁡ y ) = 0 xy'+y(\ln x-\ln y)=0 xy+y(lnxlny)=0满足条件 y ( 1 ) = e 3 y(1)=e^{3} y(1)=e3的解为 y = ( ) y=() y=()

原式两边同除 x x x
y ′ = y x ln ⁡ y x y'= \frac{y}{x}\ln \frac{y}{x} y=xylnxy
u = y x u= \frac{y}{x} u=xy
u ′ = u ( ln ⁡ u − 1 ) x ln ⁡ ∣ ln ⁡ u − 1 ∣ = ln ⁡ x + C ln ⁡ u − 1 = C x ln ⁡ y x − 1 = C x \begin{aligned} u'&= \frac{u(\ln u-1)}{x}\\ \ln \left|\ln u-1\right|&=\ln x+C\\ \ln u-1&=Cx\\ \ln \frac{y}{x}-1&=Cx\\ \end{aligned} ulnlnu1lnu1lnxy1=xu(lnu1)=lnx+C=Cx=Cx
y ( 1 ) = e 3 ⇒ C = 2 y(1)=e^{3}\Rightarrow C=2 y(1)=e3C=2,则
ln ⁡ y x − 1 = 2 x y = x e 2 x + 1 \begin{aligned} \ln \frac{y}{x}-1&=2x\\ y&=xe^{2x+1} \end{aligned} lnxy1y=2x=xe2x+1

例8:微分方程 y d x + ( x − 3 y 2 ) d y = 0 ydx+(x-3y^{2})dy=0 ydx+(x3y2)dy=0满足条件 y ∣ x = 1 = 1 y \Big|_{x=1}^{}=1 y x=1=1的解为 y = ( ) y=() y=()

本题可以用全微分方程的方式,但现在暂时未涉及到相关知识,该种方法会在以后补充

观察本题,现在对于 y y y不满足三类的任一一种,一般有两种常用思路:考虑 x , y x,y x,y对调;做变量代换

y d x + ( x − 3 y 2 ) d y = 0 d x d y + x y = 3 y x = e − ∫ 1 y d y [ ∫ 3 y e ∫ 1 y d y d y + C ] = 1 y [ y 3 + C ] 代入 x = 1 , y = 1 ⇒ C = 0 ⇒ x = y 2 ⇒ y = ± x 由于 x = 1 , y = 1 y = x \begin{aligned} ydx+(x-3y^{2})dy&=0\\ \frac{dx}{dy}+ \frac{x}{y}&=3y\\ x&=e^{-\int_{}^{} \frac{1}{y}dy}\left[\int_{}^{}3ye^{\int_{}^{}\frac{1}{y}dy} dy+C\right]\\ &= \frac{1}{y}[y^{3}+C]\\ 代入x=1,y=1\Rightarrow C&=0\\\Rightarrow x&=y^{2}\\ \Rightarrow y&=\pm \sqrt{x}\\ &由于x=1,y=1\\ y&=\sqrt{x} \end{aligned} ydx+(x3y2)dydydx+yxx代入x=1,y=1Cxyy=0=3y=ey1dy[3yey1dydy+C]=y1[y3+C]=0=y2=±x 由于x=1,y=1=x

例8:微分方程 y ′ ′ + 2 y ′ + 3 y = 0 y''+2y'+3y=0 y′′+2y+3y=0的通解为 y = ( ) y=() y=()

特征方程 r 2 + 2 r + 3 = 0 ⇒ r 1 , 2 = − 1 ± 2 i y = e − 1 ( C 1 cos ⁡ 2 x + C 2 sin ⁡ 2 x ) \begin{aligned} 特征方程\quad r^{2}+2r+3&=0\Rightarrow r_{1,2}=-1\pm \sqrt{2}i\\ y&=e^{-1}(C_{1}\cos \sqrt{2}x+C_{2}\sin \sqrt{2}x) \end{aligned} 特征方程r2+2r+3y=0r1,2=1±2 i=e1(C1cos2 x+C2sin2 x)

例9:微分方程 y ′ ′ − 4 y ′ + 8 y = e 2 x ( 1 + cos ⁡ 2 x ) y''-4y'+8y=e^{2x}(1+\cos 2x) y′′4y+8y=e2x(1+cos2x)的特解可设为 y ∗ = ( ) y ^{*}=() y=()

根据定理4

定理4:如果 y 1 ∗ ( x ) , y 2 ∗ y^{*}_{1}(x),y^{*}_{2} y1(x),y2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值