常考题型与典型例题
微分方程求解
例7:微分方程 x y ′ + y ( ln x − ln y ) = 0 xy'+y(\ln x-\ln y)=0 xy′+y(lnx−lny)=0满足条件 y ( 1 ) = e 3 y(1)=e^{3} y(1)=e3的解为 y = ( ) y=() y=()
原式两边同除 x x x
y ′ = y x ln y x y'= \frac{y}{x}\ln \frac{y}{x} y′=xylnxy
令 u = y x u= \frac{y}{x} u=xy
u ′ = u ( ln u − 1 ) x ln ∣ ln u − 1 ∣ = ln x + C ln u − 1 = C x ln y x − 1 = C x \begin{aligned} u'&= \frac{u(\ln u-1)}{x}\\ \ln \left|\ln u-1\right|&=\ln x+C\\ \ln u-1&=Cx\\ \ln \frac{y}{x}-1&=Cx\\ \end{aligned} u′ln∣lnu−1∣lnu−1lnxy−1=xu(lnu−1)=lnx+C=Cx=Cx
由 y ( 1 ) = e 3 ⇒ C = 2 y(1)=e^{3}\Rightarrow C=2 y(1)=e3⇒C=2,则
ln y x − 1 = 2 x y = x e 2 x + 1 \begin{aligned} \ln \frac{y}{x}-1&=2x\\ y&=xe^{2x+1} \end{aligned} lnxy−1y=2x=xe2x+1
例8:微分方程 y d x + ( x − 3 y 2 ) d y = 0 ydx+(x-3y^{2})dy=0 ydx+(x−3y2)dy=0满足条件 y ∣ x = 1 = 1 y \Big|_{x=1}^{}=1 y∣ ∣x=1=1的解为 y = ( ) y=() y=()
本题可以用全微分方程的方式,但现在暂时未涉及到相关知识,该种方法会在以后补充
观察本题,现在对于 y y y不满足三类的任一一种,一般有两种常用思路:考虑 x , y x,y x,y对调;做变量代换
y d x + ( x − 3 y 2 ) d y = 0 d x d y + x y = 3 y x = e − ∫ 1 y d y [ ∫ 3 y e ∫ 1 y d y d y + C ] = 1 y [ y 3 + C ] 代入 x = 1 , y = 1 ⇒ C = 0 ⇒ x = y 2 ⇒ y = ± x 由于 x = 1 , y = 1 y = x \begin{aligned} ydx+(x-3y^{2})dy&=0\\ \frac{dx}{dy}+ \frac{x}{y}&=3y\\ x&=e^{-\int_{}^{} \frac{1}{y}dy}\left[\int_{}^{}3ye^{\int_{}^{}\frac{1}{y}dy} dy+C\right]\\ &= \frac{1}{y}[y^{3}+C]\\ 代入x=1,y=1\Rightarrow C&=0\\\Rightarrow x&=y^{2}\\ \Rightarrow y&=\pm \sqrt{x}\\ &由于x=1,y=1\\ y&=\sqrt{x} \end{aligned} ydx+(x−3y2)dydydx+yxx代入x=1,y=1⇒C⇒x⇒yy=0=3y=e−∫y1dy[∫3ye∫y1dydy+C]=y1[y3+C]=0=y2=±x由于x=1,y=1=x
例8:微分方程 y ′ ′ + 2 y ′ + 3 y = 0 y''+2y'+3y=0 y′′+2y′+3y=0的通解为 y = ( ) y=() y=()
特征方程 r 2 + 2 r + 3 = 0 ⇒ r 1 , 2 = − 1 ± 2 i y = e − 1 ( C 1 cos 2 x + C 2 sin 2 x ) \begin{aligned} 特征方程\quad r^{2}+2r+3&=0\Rightarrow r_{1,2}=-1\pm \sqrt{2}i\\ y&=e^{-1}(C_{1}\cos \sqrt{2}x+C_{2}\sin \sqrt{2}x) \end{aligned} 特征方程r2+2r+3y=0⇒r1,2=−1±2i=e−1(C1cos2x+C2sin2x)
例9:微分方程 y ′ ′ − 4 y ′ + 8 y = e 2 x ( 1 + cos 2 x ) y''-4y'+8y=e^{2x}(1+\cos 2x) y′′−4y′+8y=e2x(1+cos2x)的特解可设为 y ∗ = ( ) y ^{*}=() y∗=()
根据定理4
定理4:如果 y 1 ∗ ( x ) , y 2 ∗ y^{*}_{1}(x),y^{*}_{2} y1∗(x),y2