Item冷启优化

文章探讨了Item冷启动的问题,包括精准推荐、发布激励和挖掘高潜力内容。优化措施涉及全链路召回和排序、流量调控以及使用ID嵌入、多模态表征、关键词召回、聚类和Look-Alike策略。评价指标涵盖用户和作者的行为及内容质量。流量调控采用强插提权、静态和动态保量以及差异化策略。同时,文章强调了在线环境变化和AB测试对保量的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Item冷启动的目标:

1.精准推荐。

2.激励发布。

3.挖掘高潜。

Item冷启动优化措施:

1.优化全链路(召回和排序)

2.流量调控(新老物品的流量分配)

评价指标:

    • 作者侧: 发布渗透率(发布uv/日活uv)、人均发布率。
    • 用户侧:
      item自身:新笔记点击率、交互率。(一定时间内,区分高、低曝光看ctr cvr)
      大盘的:消费时长、日活、月活。(不能过度损害大盘消费指标)
    • 内容侧(选择使用):

高热笔记占比(统计前30天内获得1w曝光的item占比)

适用召回:

    • 双塔召回
      ID Embedding优化方法一:item_id向量使用defaultEmbedding
      ID Embedding优化方法二:利用多模态(CNN+Bert)把item表征成向量,取多个高曝光的item的向量meanpooling作为冷启item的Embedding。
      线上应用:增加多个召回池(1小时新笔记、6小时新笔记、24小时新笔记、30天老笔记)向量相同,合并多个召回结果。
    • 类目、关键词召回

使用用户画像的关键词进行召回。维护类目_id 或者 关键词 -> item_i的时间倒排,召回合并多个列表。(弱个性化、但是强时间)

物料自身的基本属性,关键词提取召回(比如物料中包含的公司名,人名,地名等)

    • 聚类召回
      • 思想:根据用户行为last_n ,推荐内容相似的笔记
      • 离线:训练基于图文(Bert+CNN+FC)神经网络模型,(利用类目和点击数据生成pair-wise样本)。
      • 线下训练:多模态神经网络把图文内容映射到向量。
      • 线上服务:last n->n个特征向量->n个Cluster->n*m个新笔记。
      • 实现细节:使用(CNN+Bert)对item的图文进行表征得到向量,K-means聚类(余弦)得到1000个cluster。新item发布后想转成向量,然后计算最相似的Cluster,然后加到当前cluster的索引中【Cluster->item_id时间倒序】。
    • Look-Alike召回
      • 线下训练:用item交互过的user的向量mean-pooling得到item的向量,存到milvus。
      • 线上服务:先得到user的向量,然后从milvus取TopK个item

实现细节:Look-Alike其实就是一种特殊的ucf,并且对于item冷启是比较有利的,因为新item的emb是学习不充分的,但是交互的user不一定是新用户,他的emb可能是学习充分的,这样利于item冷启

流量调控:

      • 强插
      • Boost:排序分数做提权
        在粗排、精排处理,但是固定权重很难调到比较合适的权重。
      • 静态保量:通过提权保量

为了:保证24小时内获得100次曝光。

      • 动态保量:通过提权保量

根据目标时间、目标曝光、发布时间、已有曝光,决定权重。

需要调整调权。

      • 差异化保量:24小时内高质量保300 低质量保100。

通过内容质量、作者质量等决定保量目标。

      • 退场策略,设置曝光和点击阈值,过滤低质物料,增加优质资源的曝光

线上环境(新召回、精排变动、重排规则)的变化都有可能导致保量失败。

冷启AB:

其他:

召回只分发最近30天内的。

参考资料:ShusenWang的个人空间-ShusenWang个人主页-哔哩哔哩视频

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值