NLP第14课:动手实战中文命名实体提取

本文详细介绍了命名实体识别(NER)的基本概念及其重要性,包括命名实体的分类和评估标准。常见方法包括基于规则和词典、统计机器学习以及混合方法,各有优缺点。文章还概述了NER的一般流程,并通过jieba和pyhanlp库展示了实际操作。最后,讨论了未来可能使用条件随机场(CRF)进行模型训练。
摘要由CSDN通过智能技术生成

命名实体识别(Named EntitiesRecognition,NER)是自然语言处理的一个基础任务。其目的是识别语料中人名、地名、组织机构名等命名实体,比如,2015年中国国家海洋局对124个国际海底地理实体的命名


v2-89909fa2b3f76ab1a9bc849779410514_b.jpg


由于命名实体数量不断增加,通常不可能在词典中穷尽列出,且其构成方法具有各自的一些规律性,因而,通常把对这些词的识别从词汇形态处理(如汉语切分)任务中独立处理,称为命名实体识别。

命名实体识别技术是信息抽取、信息检索、机器翻译、问答系统等多种自然语言处理技术必不可少的组成部分。

常见的命名实体识别方法综述

命名实体是命名实体识别的研究主体,一般包括三大类(实体类、时间类和数字类)和七小类(人名、地名、机构名、时间、日期、货币和百分比)命名实体。评判一个命名实体是否被正确识别包括两个方面:实体的边界是否正确和实体的类型是否标注正确。

命名实体识别的主要技术方法分为:基

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值