机器学习入门(三):模型的质量和评判指标

本文介绍了衡量机器学习模型质量的方法,重点讨论了分类模型的评估指标——精准率(Precision)、召回率(Recall)和F1Score。通过理解这些指标,可以判断模型的过拟合或欠拟合状态,并指导模型优化。模型的评估不仅依赖于模型本身,也与数据集密切相关。
摘要由CSDN通过智能技术生成

衡量模型质量

通过训练得到模型后,我们就可以用这个模型,来进行预测了(也就是把数据输入到模型中让模型吐出一个结果)。

预测肯定能出结果,至于这个预测结果是否是你想要的,就不一定了。

一般来说,没有任何模型能百分百保证尽如人意,但我们总是追求尽量好。

什么样的模型算好呢?当然需要测试

当我们训练出了一个模型以后,为了确定它的质量,我们可以用一些知道预期预测结果的数据来对其进行预测,把实际的预测结果和实际结果进行对比,以此来评判模型的优劣。

由此,我们需要一些评价指标来衡量实际预测结果和预期结果的相似程度。

分类模型评判指标: Precision、Recall 和 F1Score

对于分类而言,最简单也是最常见的验证指标:精准率(Precision)召回率(Recall),为了综合这两个指标并得出量化结果,又发明了 F1Score

对一个分类模型而言,给它一个输入,它就会输出一个标签,这个标签就是它预测的当前输入的类别。

假设数据 data1 被模型预测的类别是 Class_A。那么,对于 data1 就有两种可能性:data1 本来就是 Class_A(预测正确),data1 本来不是 Class_A(预测错误)。

当一个测试集全部被预测完之后,相对于 Class_A,会有一些实际是 Class_A 的数据被预测为其他类ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值