电力设备热设计原理(一)

本篇为西安交通大学本科课程《电力设备设计原理》的笔记。

本篇为这一单元的第一篇笔记。下一篇传送门

高温中工作的部件,能否长期运行取决于保护结构材料的冷却措施是否可靠,还要注意热应力及由此引起的热应力。热分析和热设计需要防止电力设备热失效,即防止电力设备因为热因素而导致完全失去其电气功能。

电力设备热设计的目标和原则

电力设备热设计是指对电力设备的耗热元件以及整机或系统采用合适的冷却技术和结构设计,实现对他们的温升控制。

防止电力设备的严重热损坏是热控制的基本目的,最常见的故障时绕组的热破坏。

电力设备的运行实践表明,随着温度的增加,元件的失效率呈现指数性增长,过高的温度会造成材料的绝缘性降低,元件参数、电容量、阻值的改变会引起电信号的失真和产生漂移。过低的温度会造成橡胶的硬化、减震器损坏、润滑剂粘度增加、水分凝冻、缝隙扩大等。

电力设备经受热应力的作用,源于三个方面:

  1. 工作过程中,功率元件散耗的热量。
  2. 电力设备周围工作环境,通过导热、对流和热辐射的形式,将热量传递给设备。
  3. 电力设备在大气空间中发生相对移运动,各种摩擦引起的增温。

热设计的总原则就是自热源到耗散空间之间,尽量提供一条尽可能低的热阻通道。所以有两个方面入手,一是控制电力元件的内热阻,而是控制电力元件或整机设备的外热阻。

外热阻的控制包括形式有:

  1. 散热:利用空气或液体,靠自然对流或强制对流,带走热量。
  2. 冷却:利用热电制冷、固体升华吸热、液氮蒸发吸热等。
  3. 恒温:利用相变材料的吸放热过程,可变导热管的控温特性以及热电效应。
  4. 热管传热:解决大温差条件下温度的均衡。

热场基本方程

热量传递的基本方式

温差是激励源,热能传递是响应,传热过程中的热能称为热量。三种热量传递方式:热传导、热对流和热辐射。

热传导

物体各部分不发生相对位移,依靠分子等粒子的热运动而产生的热量传递叫做热传导,简称导热。

导热现象可以用傅里叶定律描述,也就是单位时间内所传递的热量与物体中相应温差的关系。热流密度定义为单位时间通过单位面积的热流量,用q来表示。经验总结到,热流密度和垂直传热界面方向的温度变化率成正比。当物体的温度T在x方向上发生变化,傅里叶定律一般形式为:

q = − λ ∇ T = − λ ∂ T ∂ x n \boldsymbol{q}=-\lambda\nabla T=-\lambda\frac{\partial T}{\partial x}\boldsymbol{n} q=λT=λxTn

其中 ∇ T \nabla T T是温度梯度, λ \lambda λ是比例系数,叫做热导率,又叫热导系数,是物性参数,负号表示热量传递方向和温度升高的方向是相反的。

上式又被称为传导基本定律,如果是在三维的直角坐标系内,可以进一步表示为:

q = − λ ∇ T = − λ ( ∂ T ∂ x i + ∂ T ∂ y j + ∂ T ∂ z k ) \boldsymbol{q}=-\lambda\nabla T=-\lambda(\frac{\partial T}{\partial x}\boldsymbol{i}+\frac{\partial T}{\partial y}\boldsymbol{j}+\frac{\partial T}{\partial z}\boldsymbol{k}) q=λT=λ(xTi+yTj+zTk)

可以写出导热系数的定义式为:

λ = − q ∇ T \lambda=-\frac{\boldsymbol{q}}{\nabla T} λ=Tq

可知导热系数在数值上等于温度梯度的绝对值为1K/m时的热流密度值。可以简写出沿x方向的表达式:

λ = − ϕ / A ∂ T / ∂ x \lambda=-\frac{\phi/A}{\partial T/\partial x} λ=T/xϕ/A

其中, ϕ \phi ϕ是热流量, A A A是截面面积。

热对流

热对流是指由于流体宏观的运动,流体各部分之间发生相对位移,冷热流体相互掺杂引起的热量传递过程。对流换热是指流体与固体壁面之间有相对移动,且两者有温度差时发生的热传导现象。

对流换热时,流体和壁面间传递的热量是通过壁面的流体沿壁面法向方向导热实现的,当热量从壁面导入流体后:

  • 一部分以焓的形式由运动的流体运载,形成热对流。
  • 另一部分以热量的形式导向更远的流体层,形成热扩散。

对流换热过程受到对流作用和扩散作用的双重控制。

流体和固体壁面之间的换热量按照简单的牛顿冷却定律计算:

ϕ = h A ( T w − T f ) \phi=hA(T_w-T_f) ϕ=hA(TwTf)

其中, T w T_w Tw T f T_f Tf分别为物体和流体表面的温度。 h h h是对流换热系数,他的大小反映了对流换热能力的强弱,他并不是物性参数。

如果把温差记为 Δ T \Delta T ΔT并约定其值永远为正,则牛顿冷却公式:

ϕ = A h Δ T \phi=Ah\Delta T ϕ=AhΔT

对流换热系数 h h h没有决定式,没有解释与相关物理量之间的关系。

热辐射

物体因为热的原因相外界发射电磁波来传递能量,就是热辐射。热辐射和辐射换热并不一样,物体自身的热辐射量是不随环境条件改变的。辐射力是单位时间物体单位面积向半球空间一切方向发射出去的所有波长的辐射能量。黑体辐射力可以用斯特藩-玻尔兹曼定律来计算:

E b = σ T 4 E_b=\sigma T^4 Eb=σT4

其中, σ \sigma σ是斯特藩-玻尔兹曼常量,也就是所谓的黑体辐射常数。

实际物体的辐射力可以使用斯特藩-玻尔兹曼定律的经验修正形式,即:

E = ε σ T 4 E=\varepsilon\sigma T^4 E=εσT4

其中, ε \varepsilon ε称为物体的发射率,也叫做黑度。

热传导的数学描述

温度场是某一时刻空间(或物体内)所有各点的温度分布的总称。同一个时刻温度场中温度相同的点连成的线叫做等温线,温度相同的点或线连成的面叫做等温面。等温线密集的地方说明温度变化大。温度沿某一方向x的变化率就是温度在这个方向上的方向导数,即:

∂ T ∂ x = lim ⁡ Δ x → 0 Δ T Δ x \frac{\partial T}{\partial x}=\lim_{\Delta x \to 0} \frac{\Delta T}{\Delta x} xT=Δx0limΔxΔT

温度变化率最大的地方就是等温线的法线方向,求温度场的梯度就可以得到:

∇ T = ∂ T ∂ n n \nabla T=\frac{\partial T}{\partial n}\boldsymbol{n} T=nTn

温度梯度的方向是沿等温面的法线指向温度增加的方向。

将热力学基本定律即能量守恒定律、传到基本定律即傅里叶定律应用于微元控制体,就可以建立传导的微分方程。先做出以下的假设:

  1. 所研究的物体是各向同性的均匀介质。
  2. 物体内具有均匀的热源,内热源强度即单位时间和单位体积的生成热记作 ϕ ˙ \dot{\phi} ϕ˙

在这里插入图片描述

如图所示为微元平行六面体。根据能量守恒,可以写出:

d ϕ i n + d Q = d ϕ o u t + d U \begin{equation} \mathrm{d}\phi_{in}+\mathrm{d}Q=\mathrm{d}\phi_{out}+\mathrm{d}U \end{equation} dϕin+dQ=dϕout+dU

其中, d ϕ i n \mathrm{d}\phi_{in} dϕin是进入微元体的总热流量, d Q \mathrm{d}Q dQ是微元体内热源的生成热, d ϕ o u t \mathrm{d}\phi_{out} dϕout是导出微元体的总热流量, d U \mathrm{d}U dU是微元体内能的增量。

进入微元体的总热流量可以写作来自三个方向的热量:

d ϕ i n = d ϕ x + d ϕ y + d ϕ z \mathrm{d}\phi_{in}=\mathrm{d}\phi_{x}+\mathrm{d}\phi_{y}+\mathrm{d}\phi_{z} dϕin=dϕx+dϕy+dϕz

导出微元体的总热流量可以写作进入三个方向的能量:

d ϕ o u t = d ϕ x + d x + d ϕ y + d y + d ϕ z + d z \mathrm{d}\phi_{out}=\mathrm{d}\phi_{x+\mathrm{d}x}+\mathrm{d}\phi_{y+\mathrm{d}y}+\mathrm{d}\phi_{z+\mathrm{d}z} dϕout=dϕx+dx+dϕy+dy+dϕz+dz

根据傅里叶定律,导入微元体的热流量可以写成:

d ϕ x = q x d y d z = − λ ∂ T ∂ x d y d z d ϕ y = q y d x d z = − λ ∂ T ∂ y d x d z d ϕ z = q z d x d y = − λ ∂ T ∂ z d x d y \mathrm{d}\phi_{x}=q_x\mathrm{d}y\mathrm{d}z=-\lambda\frac{\partial T}{\partial x}\mathrm{d}y\mathrm{d}z\\\\ \mathrm{d}\phi_{y}=q_y\mathrm{d}x\mathrm{d}z=-\lambda\frac{\partial T}{\partial y}\mathrm{d}x\mathrm{d}z\\\\ \mathrm{d}\phi_{z}=q_z\mathrm{d}x\mathrm{d}y=-\lambda\frac{\partial T}{\partial z}\mathrm{d}x\mathrm{d}y dϕx=qxdydz=λxTdydzdϕy=qydxdz=λyTdxdzdϕz=qzdxdy=λzTdxdy

热流密度是连续的,所以可以泰勒展开:

q x + d x = q x + ∂ q x ∂ x d x + ∂ 2 q x ∂ x 2 1 2 ! d x 2 + . . . q_{x+\mathrm{d}x}=q_x+\frac{\partial q_x}{\partial x}\mathrm{d}x+\frac{\partial^2 q_x}{\partial x^2}\frac{1}{2!}\mathrm{d}x^2+... qx+dx=qx+xqxdx+x22qx2!1dx2+...

其中,是无穷小的一个量,可以近似的取公式的前两项,而忽略更高阶的项:

q x + d x = q x + ∂ q x ∂ x d x q_{x+\mathrm{d}x}=q_x+\frac{\partial q_x}{\partial x}\mathrm{d}x qx+dx=qx+xqxdx

可得一个方向上的导出微元体的热量:

d ϕ x + d x = q x + d x d y d z = q x d y d z + ∂ q x ∂ x d x d y d z = d ϕ x + ∂ ∂ x ( − λ ∂ T ∂ x ) d x d y d z \mathrm{d}\phi_{x+\mathrm{d}x}=q_{x+\mathrm{d}x}\mathrm{d}y\mathrm{d}z=q_x\mathrm{d}y\mathrm{d}z+\frac{\partial q_x}{\partial x}\mathrm{d}x\mathrm{d}y\mathrm{d}z=\mathrm{d}\phi_{x}+\frac{\partial}{\partial x}\left(-\lambda\frac{\partial T}{\partial x}\right)\mathrm{d}x\mathrm{d}y\mathrm{d}z dϕx+dx=qx+dxdydz=qxdydz+xqxdxdydz=dϕx+x(λxT)dxdydz

同理可得剩下两个方向的公式:

d ϕ y + d y = d ϕ y + ∂ ∂ y ( − λ ∂ T ∂ y ) d x d y d z d ϕ z + d z = d ϕ z + ∂ ∂ z ( − λ ∂ T ∂ z ) d x d y d z \mathrm{d}\phi_{y+\mathrm{d}y}=\mathrm{d}\phi_{y}+\frac{\partial}{\partial y}\left(-\lambda\frac{\partial T}{\partial y}\right)\mathrm{d}x\mathrm{d}y\mathrm{d}z\\\\ \mathrm{d}\phi_{z+\mathrm{d}z}=\mathrm{d}\phi_{z}+\frac{\partial}{\partial z}\left(-\lambda\frac{\partial T}{\partial z}\right)\mathrm{d}x\mathrm{d}y\mathrm{d}z dϕy+dy=dϕy+y(λyT)dxdydzdϕz+dz=dϕz+z(λzT)dxdydz

微元体的内能增加量可以表示为:

d U = ρ c ∂ T ∂ t d x d y d z \mathrm{d}U=\rho c\frac{\partial T}{\partial t}\mathrm{d}x\mathrm{d}y\mathrm{d}z dU=ρctTdxdydz

其中, ρ \rho ρ表示密度, c c c表示比热容。而微元体内热源的生成热为:

d Q = ϕ ˙ d x d y d z \mathrm{d}Q=\dot{\phi}\mathrm{d}x\mathrm{d}y\mathrm{d}z dQ=ϕ˙dxdydz

将上面求出来的各项带入到公式(1)中,得到能量平衡为:

ρ c ∂ T ∂ t = ∂ ∂ x ( λ ∂ T ∂ x ) + ∂ ∂ y ( λ ∂ T ∂ y ) + ∂ ∂ z ( λ ∂ T ∂ z ) + ϕ ˙ \rho c\frac{\partial T}{\partial t}=\frac{\partial}{\partial x}\left(\lambda\frac{\partial T}{\partial x}\right)+\frac{\partial}{\partial y}\left(\lambda\frac{\partial T}{\partial y}\right)+\frac{\partial}{\partial z}\left(\lambda\frac{\partial T}{\partial z}\right)+\dot{\phi} ρctT=x(λxT)+y(λyT)+z(λzT)+ϕ˙

上面这个微分方程就是传到微分方程的一般形式。等号左边这一项是单位时间内微元体热力学能的增量,通常称为非稳态项。等号右边前三项式扩散项,是由热传导引起的,最后一项是源项。可以根据不同的条件简化微分方程为:

导热系数为常数

简化为:

∂ T ∂ t = a ∇ 2 T + ϕ ˙ ρ c \frac{\partial T}{\partial t}=a\nabla^2T+\frac{\dot{\phi}}{\rho c} tT=a2T+ρcϕ˙

其中, a = λ ρ c a=\frac{\lambda}{\rho c} a=ρcλ是热扩散项,也叫导温系数,其值越大,意味着温度变化传播越迅速。而 ∇ 2 \nabla^2 2是拉普拉斯算子,直角坐标系下 ∇ 2 T = ∂ 2 T ∂ x 2 + ∂ 2 T ∂ y 2 + ∂ 2 T ∂ z 2 \nabla^2T=\frac{\partial^2 T}{\partial x^2}+\frac{\partial^2 T}{\partial y^2}+\frac{\partial^2 T}{\partial z^2} 2T=x22T+y22T+z22T

无内热源,导热系数为常数

简化为:

∂ T ∂ t = a ∇ 2 T \frac{\partial T}{\partial t}=a\nabla^2T tT=a2T

是一个常物性、无内热源的三维非稳态传导微分方程。

常物性、稳态且有内热源

简化为:

∇ 2 T = − ϕ ˙ λ \nabla^2T=-\frac{\dot{\phi}}{\lambda} 2T=λϕ˙

数学上上式称为泊松方程。

常物性、稳态且无内热源

简化为:

∇ 2 T = 0 \nabla^2T=0 2T=0

就是拉普拉斯方程。

在圆柱坐标系或球坐标系下

常物性时,圆柱坐标系下, ∇ 2 T = ∂ 2 T ∂ r 2 + 1 r ∂ T ∂ r + 1 r 2 ∂ 2 T ∂ φ 2 + ∂ 2 T ∂ z 2 \nabla^2T=\frac{\partial^2 T}{\partial r^2}+\frac{1}{r}\frac{\partial T}{\partial r}+\frac{1}{r^2}\frac{\partial^2 T}{\partial \varphi^2}+\frac{\partial^2 T}{\partial z^2} 2T=r22T+r1rT+r21φ22T+z22T

在球坐标下, ∇ 2 T = 1 r 2 ∂ r ( r 2 ∂ T ∂ r ) + 1 r 2 sin ⁡ θ ∂ ∂ θ ( sin ⁡ θ ∂ T ∂ θ ) + 1 r 2 sin ⁡ 2 θ ∂ ∂ φ ( ∂ T ∂ φ ) \nabla^2T=\frac{1}{r^2}\frac{\partial}{r}\left(r^2\frac{\partial T}{\partial r}\right)+\frac{1}{r^2\sin\theta} \frac{\partial}{\partial \theta}\left(\sin\theta\frac{\partial T}{\partial \theta}\right)+\frac{1}{r^2\sin^2\theta}\frac{\partial}{\partial \varphi}\left(\frac{\partial T}{\partial \varphi}\right) 2T=r21r(r2rT)+r2sinθ1θ(sinθθT)+r2sin2θ1φ(φT)

定解条件

对于非稳态过程,必须给出开始时物体内部的温度分布规律,称之为非稳态传导过程的初始条件,即:

T ∣ τ = 0 = f ( x , y , z ) T|_{\tau=0}=f(x,y,z) Tτ=0=f(x,y,z)

边界条件是传导物体边界上的热状态以及周围环境之间的相互作用。边界条件分为三类:

第一类边界条件

给出物体边界上的温度分布及其随时间的变化规律,一般为:

T w = f ( x , y , z , t ) T_w=f(x,y,z,t) Tw=f(x,y,z,t)

第二类边界条件

给出物体边界上的热流密度分布及其随时间额定变化规律,一般为:

q w = f ( x , y , z , t ) q_w=f(x,y,z,t) qw=f(x,y,z,t)

根据傅里叶定律可以写成:

− ( ∂ T ∂ n ) w = f ( x , y , z , t ) -\left(\frac{\partial T}{\partial n}\right)_w=f(x,y,z,t) (nT)w=f(x,y,z,t)

他给出的是边界上法线方向的温度变化率,边界真正的温度是不知道的。

如果边界绝热,意味着热流密度为零:

q w = 0 q_w=0 qw=0

第三类边界条件

给出物体边界的表面与周围流体间的传热系数 h h h和流体的温度 T f T_f Tf,根据热平衡,物体内部导向边界的热流密度等于物体边界导向周围流体的热流密度,所以得到一般形式:

− λ ( ∂ T ∂ n ) w = h ( T w − T f ) -\lambda\left(\frac{\partial T}{\partial n}\right)_w=h(T_w-T_f) λ(nT)w=h(TwTf)

第三边界条件可以转化成前两个边界条件:当h非常大的时候,边界表面的温度等于外部流体的温度,相当于是第一边界条件;当h非常小的时候,接近于0, q w = 0 q_w=0 qw=0,相当于绝热的第二类边界条件。

上述的三类边界条件都是线性边界条件,如果考虑与周围环境的辐射换热,则在边界表面与周围流体的换热加上一项,这一项就是净辐射换热热流密度,与物体边界界面温度的四次方成正比。

对流换热的数学描述

对流换热要涉及流体的运动状态,流体的性质,流体相接触的物体表面形状大小等复杂因素。

控制方程

对于不可压缩、常物性、无内热源的二维问题,在直角坐标系下,有以下三个方程。而质量守恒方程和动量守恒方程又被称为连续性方程,他们是描述粘性流体流动过程的控制性方程,对于不可压缩的粘性流体的层流和湍流都适用。

质量守恒方程

这个公式的前提是二维、稳态流动、密度为常数而且流入微元体的净质量与微元体内流体质量的变化相等。

∂ u ∂ x + ∂ v ∂ y = 0 \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 xu+yv=0

其中u是x方向上的速度,v是y方向上的速度。

动量守恒方程

他描述了流体速度场,作用在微元体上的各个外力的总和等于控制体中流体动量的变化率。

ρ ( ∂ u ∂ t + u ∂ u ∂ x + v ∂ u ∂ y ) = F x − ∂ p ∂ x + η ( ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 ) ρ ( ∂ v ∂ t + u ∂ v ∂ x + v ∂ v ∂ y ) = F v − ∂ p ∂ y + η ( ∂ 2 v ∂ x 2 + ∂ 2 v ∂ y 2 ) \rho\left(\frac{\partial u}{\partial t}+u\frac{\partial u}{\partial x}+v\frac{\partial u}{\partial y}\right)=F_x-\frac{\partial p}{\partial x}+\eta\left(\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}\right)\\\\ \rho\left(\frac{\partial v}{\partial t}+u\frac{\partial v}{\partial x}+v\frac{\partial v}{\partial y}\right)=F_v-\frac{\partial p}{\partial y}+\eta\left(\frac{\partial^2 v}{\partial x^2}+\frac{\partial^2 v}{\partial y^2}\right) ρ(tu+uxu+vyu)=Fxxp+η(x22u+y22u)ρ(tv+uxv+vyv)=Fvyp+η(x22v+y22v)

其中, ρ \rho ρ是密度, F x , F y F_x,F_y Fx,Fy是体积力在x和y方向上的分量,p是压强, η \eta η是运动粘度或粘度系数,他的物理意义是在距离单位长度的两液层中,使得单位面积液层维持单位速度差所需的切线力。

能量守恒方程

∂ T ∂ t + u ∂ T ∂ x + v ∂ T ∂ y = λ ρ c p ( ∂ 2 T ∂ x 2 + ∂ 2 T ∂ y 2 ) \frac{\partial T}{\partial t}+u\frac{\partial T}{\partial x}+v\frac{\partial T}{\partial y}=\frac{\lambda}{\rho c_p}\left(\frac{\partial^2 T}{\partial x^2}+\frac{\partial^2 T}{\partial y^2}\right) tT+uxT+vyT=ρcpλ(x22T+y22T)
其中, c p c_p cp是定压比热容。

定解问题

包括初始时刻的条件以及边界上与速度、压力及温度有关的条件。

辐射换热的数学描述

考察一个参与辐射的灰体表面。设这个表面的温度是T,面积是A,表面因为自己的温度会一直向外界发射出辐射能E。与此同时也要吸收一部分投射到物体表面的辐射,并且反射一部分投射到物体表面的辐射。外界投射到物体表面的辐射能就是投入辐射,记作G,吸收和反射的能量分别表示为 α G \alpha G αG ( 1 − α ) G (1-\alpha) G (1α)G

定义物体表面自身发出的辐射力和给物体投射的辐射力中物体反射的一部分辐射力之和为物体表面的有效辐射力,记作J,用设备探测到的表面辐射就是有效辐射:
J = E + ( 1 − α ) G = ε E b + ( 1 − α ) G J=E+(1-\alpha) G=\varepsilon E_b+(1-\alpha) G J=E+(1α)G=εEb+(1α)G

根据热平衡,单位面积上的辐射换热量应该等于有效辐射与投入辐射之差,也等于自身辐射力与吸收的投入辐射能之差:
ϕ A = J − G = ε E b − α G \frac{\phi}{A}=J-G=\varepsilon E_b-\alpha G Aϕ=JG=εEbαG

ε = α \varepsilon=\alpha ε=α则:
ϕ = E b − J 1 − ε ε A \phi=\frac{E_b-J}{\frac{1-\varepsilon}{\varepsilon A}} ϕ=εA1εEbJ
这种形式便于进行辐射换热的计算。上面这个表达式和欧姆定律很相似: E b − J E_b-J EbJ一般叫做表面辐射势差, 1 − ε ε A \frac{1-\varepsilon}{\varepsilon A} εA1ε叫做表面辐射热阻。

  • 对于黑体表面, ε = 1 \varepsilon=1 ε=1,表面的辐射热阻是0,则有 J = E b J=E_b J=Eb,这个时候物体表面辐射出去的辐射热流是 ϕ = E b A \phi=E_bA ϕ=EbA
  • 对于绝热表面,相当于热阻是无限大, ϕ = 0 \phi=0 ϕ=0,既不失去能量也不得到能量,有 J = E b = σ T 4 J=E_b=\sigma T^4 J=Eb=σT4。这样的表面叫做重辐射面。

物体间辐射换热必然和物体表面的集合形状、大小和相对位置有关,要引入角系数的概念:

  • 定义一个表面发射出的辐射能投射到另一个表面上的份额为该表面对另一表面的角系数。
  • 两个在任意位置的表面1、2各自的温度是 T 1 , T 2 T_1,T_2 T1,T2,直接投射到表面2的辐射能占从表面1发射的总辐射能的百分比就是表面1对表面2的角系数,记作 X 1 , 2 X_{1,2} X1,2
  • 同理可得,表面2对表面1的角系数,记作 X 2 , 1 X_{2,1} X2,1

利用角系数,可以计算出:单位时间内从表面1到表面2的能量为 E b 1 A 1 X 1 , 2 E_{b1}A_1X_{1,2} Eb1A1X1,2,也可以算出单位时间内从表面1到表面2的能量为 E b 2 A 2 X 2 , 1 E_{b2}A_2X_{2,1} Eb2A2X2,1。如果两个表面都是黑体,那么他们之间的辐射换热量,就是上述两个能量之差为:
ϕ 1 , 2 = E b 1 A 1 X 1 , 2 − E b 2 A 2 X 2 , 1 \phi_{1,2}=E_{b1}A_1X_{1,2}-E_{b2}A_2X_{2,1} ϕ1,2=Eb1A1X1,2Eb2A2X2,1
当黑体的温度和面积都已知的时候,只需要求出角系数,就可以计算出辐射换热量。

灰体表面组成的封闭系统的辐射换热

根据有效辐射的概念可以分析灰体表面组成的封闭系统的辐射换热。

在这里插入图片描述

如图所示的两种情况,图a代表的是二维即两个圆柱面,或者是三维即两个球面,图b代表的是在垂直于直面方向的无限长。算出他们的辐射换热是:

ϕ 1 , 2 = J 1 A 1 X 1 , 2 − J 2 A 2 X 2 , 1 \phi_{1,2}=J_{1}A_1X_{1,2}-J_{2}A_2X_{2,1} ϕ1,2=J1A1X1,2J2A2X2,1

角系数具有互换性,即 A 1 X 1 , 2 = A 2 X 2 , 1 A_1X_{1,2}=A_2X_{2,1} A1X1,2=A2X2,1,可以将上式改写成:
ϕ 1 , 2 = J 1 − J 2 1 A 1 X 1 , 2 = J 1 − J 2 1 A 2 X 2 , 1 \phi_{1,2}=\frac{J_1-J_2}{\frac{1}{A_1X_{1,2}}}=\frac{J_1-J_2}{\frac{1}{A_2X_{2,1}}} ϕ1,2=A1X1,21J1J2=A2X2,11J1J2
分子式两表面的空间辐射势差,而分母是两表面间的辐射热阻。

假设物体是黑体,有 J = E b J=E_b J=Eb,可得:
ϕ 1 , 2 = E b 1 − E b 2 1 A 1 X 1 , 2 = A 1 X 1 , 2 σ ( T 1 4 − T 2 4 ) \phi_{1,2}=\frac{E_{b1}-E_{b2}}{\frac{1}{A_1X_{1,2}}}=A_1X_{1,2}\sigma(T_1^4-T_2^4) ϕ1,2=A1X1,21Eb1Eb2=A1X1,2σ(T14T24)

因此对于黑体表面之间的辐射换热,只需要知道两表面之间的角系数和两表面的温度,就可以计算出辐射换热量。

灰体表面辐射换热的热阻等效

两个任意的灰体表面构成一个封闭腔,存在辐射换热,根据系统的平衡关系可知:
ϕ 1 = ϕ 1 , 2 = − ϕ 2 \phi_1=\phi_{1,2}=-\phi_2 ϕ1=ϕ1,2=ϕ2

也就是说,从表面1发出的净辐射能等于两表面交换的辐射能,也等于表面2发出的净辐射能的负值。在热辐射的过程中,有三个损失的环节,一是表面1因为不是黑体辐射的损失,二是辐射过程中的损失,三是表面2因为不是黑体辐射的损失,两个灰体表面的辐射换热热阻由三个辐射热阻串联而成,即:
ϕ 1 , 2 = E b 1 − E b 2 1 − ε 1 ε 1 A 1 + 1 A 1 X 1 , 2 + 1 − ε 2 ε 2 A 2 \phi_{1,2}=\frac{E_{b1}-E_{b2}}{\frac{1-\varepsilon_1}{\varepsilon_1 A_1}+\frac{1}{A_1X_{1,2}}+\frac{1-\varepsilon_2}{\varepsilon_2 A_2}} ϕ1,2=ε1A11ε1+A1X1,21+ε2A21ε2Eb1Eb2

统一用 A 1 A_1 A1作为计算的面积,改写上式可得:
ϕ 1 , 2 = A 1 ( E b 1 − E b 2 ) 1 − ε 1 ε 1 + 1 X 1 , 2 + 1 − ε 2 ε 2 A 1 A 2 = ε s A 1 X 1 , 2 ( E b 1 − E b 2 ) \phi_{1,2}=\frac{A_1(E_{b1}-E_{b2})}{\frac{1-\varepsilon_1}{\varepsilon_1 }+\frac{1}{X_{1,2}}+\frac{1-\varepsilon_2}{\varepsilon_2 }\frac{A_1}{A_2}}=\varepsilon_sA_1X_{1,2}(E_{b1}-E_{b2}) ϕ1,2=ε11ε1+X1,21+ε21ε2A2A1A1(Eb1Eb2)=εsA1X1,2(Eb1Eb2)

其中, ε s \varepsilon_s εs就是辐射换热系数的系统黑度。 ε s = 1 1 + X 1 , 2 ( 1 ε 1 − 1 ) + X 2 , 1 ( 1 ε 2 − 1 ) \varepsilon_s=\frac{1}{1+X_{1,2}\left(\frac{1}{\varepsilon_1}-1\right)+X_{2,1}\left(\frac{1}{\varepsilon_2}-1\right)} εs=1+X1,2(ε111)+X2,1(ε211)1

发热、散热与热平衡

发热来源有以下:

  1. 电流通过导体的发热:利用焦耳定律计算。
  2. 介质损耗的发热:公式为 P d = U 2 ω C tan ⁡ δ P_d=U^2\omega C \tan \delta Pd=U2ωCtanδ
  3. 由于电磁感应引起的涡流损耗、临近效应、铁磁损耗等的发热。
  • 温度的上升会导致绝缘介质发生热击穿。热击穿和材料的 ε r tan ⁡ δ \varepsilon_r \tan \delta εrtanδ乘积、导热性能和绝缘的散热条件有关,和所加的电压的形式和时间有关,但是和电场的均匀程度无关。
  • 传热过程两侧换热都比较强,发生相变化热的流体侧也可能称为传热过程的主要部分。
  • 物体与外界接触,其内部温度各处均匀且等于外界温度的状况称为热平衡
  • 30
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值