电力系统潮流计算的计算机算法(四)——PQ快速解耦潮流算法

本篇为本科课程《电力系统稳态分析》的笔记。

本篇为这一章的第四篇笔记。上一篇传送门

潮流计算的快速解耦法

牛顿-拉夫逊法潮流计算,主要的工作量在于形成雅可比矩阵和求解修正方程。由于雅可比矩阵的阶数为n+m-1,约为节点总数的两倍,非对称矩阵,且在迭代过程中需要不断的变化,所以大规模的电力系统中应用该算法很费时费力。

PQ分解法潮流计算的修正方程

有一种快速解耦法,是最有效且应用最广。电力系统中线路的电阻远小于电抗,即 R ≪ X R\ll X RX,换成导纳表示即 G ≪ B G\ll B GB,说明可以忽略所有的G,令 G = 0 G=0 G=0。前面一章已经推理过,从物理意义上,有功功率P主要和电压相角 θ \theta θ相关,无功功率主要和电压有效值U相关。

节点的分类保持不变。修正方程式如下:
[ Δ P Δ Q ] = − [ H N M L ] [ Δ θ Δ U ~ ] \begin{bmatrix} \Delta \boldsymbol{P}\\ \Delta \boldsymbol{Q} \end{bmatrix}=-\begin{bmatrix} \boldsymbol{H} & \boldsymbol{N}\\ \boldsymbol{M} & \boldsymbol{L} \end{bmatrix} \begin{bmatrix} \Delta \boldsymbol{\theta}\\ \Delta \boldsymbol{\widetilde{U}} \end{bmatrix} [ΔPΔQ]=[HMNL][ΔθΔU ]

根据有功功率P主要和电压相角 θ \theta θ相关,无功功率主要和电压有效值U相关,可以将 N , M \boldsymbol{N},\boldsymbol{M} N,M置为零,从而将修正方程化为:
[ Δ P Δ Q ] = − [ H 0 0 L ] [ Δ θ Δ U ~ ] \begin{bmatrix} \Delta \boldsymbol{P}\\ \Delta \boldsymbol{Q} \end{bmatrix}=-\begin{bmatrix} \boldsymbol{H} & 0\\ 0 & \boldsymbol{L} \end{bmatrix} \begin{bmatrix} \Delta \boldsymbol{\theta}\\ \Delta \boldsymbol{\widetilde{U}} \end{bmatrix} [ΔPΔQ]=[H00L][ΔθΔU ]

所以得到两个独立的方程,第一个式子只和相角和有功功率有关,第二个式子只和电压和无功功率有关:
− H Δ θ = Δ P − L Δ U ~ = Δ Q -\boldsymbol{H}\Delta\boldsymbol{\theta}=\Delta\boldsymbol{P}\\\\ -\boldsymbol{L}\Delta\boldsymbol{\widetilde{U}}=\Delta\boldsymbol{Q} HΔθ=ΔPLΔU =ΔQ

另外,各个节点之间的相角差很小,即 θ ≈ 0 ° \theta\approx 0\degree θ,再考虑到 G ≪ B G\ll B GB,所以有 cos ⁡ θ ≈ 1 , G cos ⁡ θ ≪ B \cos\theta\approx 1,G\cos\theta\ll B cosθ1,GcosθB

所以,雅可比矩阵的各个元素可以化简为:
H i j = U i U j B i j H i i = − U i ∑ j = 1 j ≠ i n U j B i j = − U i ∑ j = 1 n U j B i j + U i 2 B i i = Q i + U i 2 B i i L i j = U i U j B i j L i i = U i ∑ j = 1 j ≠ i n U j B i j + 2 U i 2 B i i = U i ∑ j = 1 n U j B i j + U i 2 B i i = − Q i + U i 2 B i i \begin{aligned} &H_{ij}=U_{i}U_{j}B_{ij}\\ &H_{ii}=-U_{i}\sum_{j=1\atop j\neq i}^{n}U_{j}B_{ij}=-U_{i}\sum_{j=1}^{n}U_{j}B_{ij}+U_{i}^{2}B_{ii}=Q_{i}+U_{i}^{2}B_{ii}\\ &L_{ij}=U_{i}U_{j}B_{ij}\\ &L_{ii}=U_{i}\sum_{j=1\atop j\neq i}^{n}U_{j}B_{ij}+2U_{i}^{2}B_{ii}=U_{i}\sum_{j=1}^{n}U_{j}B_{ij}+U_{i}^{2}B_{ii}=-Q_{i}+U_{i}^{2}B_{ii} \end{aligned} Hij=UiUjBijHii=Uij=ij=1nUjBij=Uij=1nUjBij+Ui2Bii=Qi+Ui2BiiLij=UiUjBijLii=Uij=ij=1nUjBij+2Ui2Bii=Uij=1nUjBij+Ui2Bii=Qi+Ui2Bii

按照导纳的定义,上面两个式子中 U i 2 B i i U_{i}^{2}B_{ii} Ui2Bii应是各元件电抗远大于电阻的前提下,除了节点i之外的其他节点都接地的时候,由节点i注入的无功功率。它必然远大于正常运行时节点i的注入无功功率,即 U i 2 B i i ≫ Q i U_{i}^{2}B_{ii}\gg Q_i Ui2BiiQi,则可以化简:
H i i = U i 2 B i i L i i = U i 2 B i i H_{ii}=U_{i}^{2}B_{ii}\\\\ L_{ii}=U_{i}^{2}B_{ii} Hii=Ui2BiiLii=Ui2Bii

这样,矩阵 H , L \boldsymbol{H},\boldsymbol{L} H,L具有相同的表达式,但是他们的阶数不同,前者为(n-1)阶,后者为(m-1)阶。

矩阵 H \boldsymbol{H} H可以表示为:
b o l d s y m b o l H = [ U 1 2 B 11 U 1 U 2 B 12 ⋯ U 1 U n − 1 B 1 , n − 1 U 2 U 1 B 21 U 2 2 B 22 ⋯ U 2 U n − 1 B 2 , n − 1 ⋮ ⋮ ⋱ ⋮ U n − 1 U 1 B n − 1 , 1 U n − 1 U 2 B n − 1 , 2 ⋯ U n − 1 2 B n − 1 , n − 1 ] = [ U 1 0 ⋯ 0 0 U 2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ U n − 1 ] [ B 11 B 12 ⋯ B 1. n − 1 B 21 B 22 ⋯ ⋮ ⋮ ⋮ ⋱ ⋮ B n − 1 , 1 B n − 1 , 2 ⋯ B n − 1 , n − 1 ] [ U 1 0 ⋯ 0 0 U 2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ U n − 1 ] boldsymbol{H}=\begin{bmatrix} U_1^2B_{11}&U_1U_2B_{12}&\cdots&U_1U_{n-1}B_{1,n-1}\\U_2U_1B_{21}&U_2^2B_{22}&\cdots&U_2U_{n-1}B_{2,n-1}\\\vdots&\vdots&\ddots&\vdots\\U_{n-1}U_1B_{n-1,1}&U_{n-1}U_2B_{n-1,2}&\cdots&U_{n-1}^2B_{n-1,n-1} \end{bmatrix}=\begin{bmatrix} U_1&0&\cdots&0\\0&U_2&\cdots&0\\\vdots&\vdots&\ddots&\vdots\\0&0&\cdots&U_{n-1} \end{bmatrix} \begin{bmatrix} B_{11}&B_{12}&\cdots&B_{1.n-1}\\B_{21}&B_{22}&\cdots&\vdots\\\vdots&\vdots&\ddots&\vdots\\B_{n-1,1}&B_{n-1,2}&\cdots&B_{n-1,n-1} \end{bmatrix} \begin{bmatrix} U_1&0&\cdots&0\\0&U_2&\cdots&0\\\vdots&\vdots&\ddots&\vdots\\0&0&\cdots&U_{n-1} \end{bmatrix} boldsymbolH= U12B11U2U1B21Un1U1Bn1,1U1U2B12U22B22Un1U2Bn1,2U1Un1B1,n1U2Un1B2,n1Un12Bn1,n1 = U1000U2000Un1 B11B21Bn1,1B12B22Bn1,2B1.n1Bn1,n1 U1000U2000Un1

而矩阵 L \boldsymbol{L} L可以表示为:
L = [ U 1 2 B 11 U 1 U 2 B 12 ⋯ U 1 U m B 1 m U 2 U 1 B 21 U 2 2 B 22 ⋯ U 2 U m B 2 m ⋮ ⋮ ⋱ ⋮ U m U 1 B m 1 U m U 2 B m 2 ⋯ U m 2 B m m ] = [ U 1 0 ⋯ 0 0 U 2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ U m ] [ B 11 B 12 ⋯ B 1 m B 21 B 22 ⋯ B 2 m ⋮ ⋮ ⋱ ⋮ B m 1 B m 2 ⋯ B m m ] [ U 1 0 ⋯ 0 0 U 2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ U m ] \boldsymbol{L}=\begin{bmatrix} U_{1}^{2}B_{11}&U_{1}U_{2}B_{12}&\cdots&U_{1}U_{m}B_{1m}\\U_{2}U_{1}B_{21}&U_{2}^{2}B_{22}&\cdots&U_{2}U_{m}B_{2m}\\\vdots&\vdots&\ddots&\vdots\\U_{m}U_{1}B_{m1}&U_{m}U_{2}B_{m2}&\cdots&U_{m}^{2}B_{mm} \end{bmatrix}=\begin{bmatrix} U_{1}&0&\cdots&0\\0&U_{2}&\cdots&0\\\vdots&\vdots&\ddots&\vdots\\0&0&\cdots&U_{m} \end{bmatrix} \begin{bmatrix} B_{11}&B_{12}&\cdots&B_{1m}\\B_{21}&B_{22}&\cdots&B_{2m}\\\vdots&\vdots&\ddots&\vdots\\B_{m1}&B_{m2}&\cdots&B_{mm} \end{bmatrix} \begin{bmatrix} U_{1}&0&\cdots&0\\0&U_{2}&\cdots&0\\\vdots&\vdots&\ddots&\vdots\\0&0&\cdots&U_{m} \end{bmatrix} L= U12B11U2U1B21UmU1Bm1U1U2B12U22B22UmU2Bm2U1UmB1mU2UmB2mUm2Bmm = U1000U2000Um B11B21Bm1B12B22Bm2B1mB2mBmm U1000U2000Um

然后将变化过的矩阵 H , L \boldsymbol{H},\boldsymbol{L} H,L带入上面说过的两个独立方程式内,可得新的修正方程,第一个式子为:
− [ U 1 0 ⋯ 0 0 U 2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ U n − 1 ] [ B 11 B 12 ⋯ B 1 , n − 1 B 21 B 22 ⋯ B 2 , n − 1 ⋮ ⋮ ⋱ ⋮ B n − 1 , 1 B n − 1 , 2 ⋯ B n − 1 , n − 1 ] [ U 1 Δ θ 1 U 2 Δ θ 2 ⋮ U n − 1 Δ θ n − 1 ] = [ Δ P 1 Δ P 2 ⋮ Δ P n − 1 ] -\begin{bmatrix} U_{1}&0&\cdots&0\\0&U_{2}&\cdots&0\\\vdots&\vdots&\ddots&\vdots\\0&0&\cdots&U_{n-1} \end{bmatrix} \begin{bmatrix} B_{11}&B_{12}&\cdots&B_{1,n-1}\\B_{21}&B_{22}&\cdots&B_{2,n-1}\\\vdots&\vdots&\ddots&\vdots\\B_{n-1,1}&B_{n-1,2}&\cdots&B_{n-1,n-1} \end{bmatrix} \begin{bmatrix} U_{1}\Delta\theta_{1}\\U_{2}\Delta\theta_{2}\\\vdots\\U_{n-1}\Delta\theta_{n-1} \end{bmatrix}= \begin{bmatrix} \Delta P_{1}\\\Delta P_{2}\\\vdots\\\Delta P_{n-1} \end{bmatrix} U1000U2000Un1 B11B21Bn1,1B12B22Bn1,2B1,n1B2,n1Bn1,n1 U1Δθ1U2Δθ2Un1Δθn1 = ΔP1ΔP2ΔPn1
进一步化简为:
− [ B 11 B 12 ⋯ B 1 , n − 1 B 21 B 22 ⋯ B 2 , n − 1 ⋮ ⋮ ⋱ ⋮ B n − 1 , 1 B n − 1 , 2 ⋯ B n − 1 , n − 1 ] [ U 1 Δ θ 1 U 2 Δ θ 2 ⋮ U n − 1 Δ θ n − 1 ] = [ Δ P 1 / U 1 Δ P 2 / U 2 ⋮ Δ P n − 1 / U n − 1 ] -\begin{bmatrix} B_{11}&B_{12}&\cdots&B_{1,n-1}\\B_{21}&B_{22}&\cdots&B_{2,n-1}\\\vdots&\vdots&\ddots&\vdots\\B_{n-1,1}&B_{n-1,2}&\cdots&B_{n-1,n-1} \end{bmatrix} \begin{bmatrix} U_{1}\Delta\theta_{1}\\U_{2}\Delta\theta_{2}\\\vdots\\U_{n-1}\Delta\theta_{n-1} \end{bmatrix}= \begin{bmatrix} \Delta P_{1}/U_{1}\\\Delta P_{2}/U_{2}\\\vdots\\\Delta P_{n-1}/U_{n-1} \end{bmatrix} B11B21Bn1,1B12B22Bn1,2B1,n1B2,n1Bn1,n1 U1Δθ1U2Δθ2Un1Δθn1 = ΔP1/U1ΔP2/U2ΔPn1/Un1

第二个式子为:
− [ U 1 0 ⋯ 0 0 U 2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ U m ] [ B 11 B 12 ⋯ B 1 m B 21 B 22 ⋯ B 2 m ⋮ ⋮ ⋱ ⋮ B m 1 B m 2 ⋯ B m m ] [ Δ U 1 Δ U 2 ⋮ Δ U m ] = [ Δ Q 1 Δ Q 2 ⋮ Δ Q m ] -\begin{bmatrix} U_{1}&0&\cdots&0\\0&U_{2}&\cdots&0\\\vdots&\vdots&\ddots&\vdots\\0&0&\cdots&U_{m} \end{bmatrix} \begin{bmatrix} B_{11}&B_{12}&\cdots&B_{1m}\\B_{21}&B_{22}&\cdots&B_{2m}\\\vdots&\vdots&\ddots&\vdots\\B_{m1}&B_{m2}&\cdots&B_{mm} \end{bmatrix} \begin{bmatrix} \Delta U_{1}\\\Delta U_{2}\\\vdots\\\Delta U_{m} \end{bmatrix} =\begin{bmatrix} \Delta Q_{1}\\\Delta Q_{2}\\\vdots\\\Delta Q_{m} \end{bmatrix} U1000U2000Um B11B21Bm1B12B22Bm2B1mB2mBmm ΔU1ΔU2ΔUm = ΔQ1ΔQ2ΔQm
进一步化简为:
− [ B 11 B 12 ⋯ B 1 m B 21 B 22 ⋯ B 2 m ⋮ ⋮ ⋱ ⋮ B m 1 B m 2 ⋯ B m m ] [ Δ U 1 Δ U 2 ⋮ Δ U m ] = [ Δ Q 1 / U 1 Δ Q 2 / U 2 ⋮ Δ Q m / U m ] -\begin{bmatrix} B_{11}&B_{12}&\cdots&B_{1m}\\B_{21}&B_{22}&\cdots&B_{2m}\\\vdots&\vdots&\ddots&\vdots\\B_{m1}&B_{m2}&\cdots&B_{mm} \end{bmatrix} \begin{bmatrix} \Delta U_{1}\\\Delta U_{2}\\\vdots\\\Delta U_{m} \end{bmatrix}= \begin{bmatrix} \Delta Q_{1}/U_{1}\\\Delta Q_{2}/U_{2}\\\vdots\\\Delta Q_{m}/U_{m} \end{bmatrix} B11B21Bm1B12B22Bm2B1mB2mBmm ΔU1ΔU2ΔUm = ΔQ1/U1ΔQ2/U2ΔQm/Um

则第一个方程式可以简写为:
B ′ Δ θ ∘ U = Δ P / U \boldsymbol{B}'\Delta\boldsymbol{\theta}\circ\boldsymbol{U}=\Delta\boldsymbol{P}/\boldsymbol{U}\\\\ BΔθU=ΔP/U

其中, ∘ \circ 表示两个矩阵逐元素相乘, / / /表示两个矩阵逐元素相除。矩阵 B ′ \boldsymbol{B}' B − B -\boldsymbol{B} B的前n-1行前n-1列,是对称常定矩阵, Δ θ , Δ P , U \Delta\boldsymbol{\theta},\Delta\boldsymbol{P},\boldsymbol{U} Δθ,ΔP,U均为n-1行的列向量。

第二个方程式可以简写为:
B ′ ′ Δ U = Δ Q / U \boldsymbol{B}''\Delta\boldsymbol{U}=\Delta\boldsymbol{Q}/\boldsymbol{U} B′′ΔU=ΔQ/U

其中, / / /表示两个矩阵逐元素相除。矩阵 B ′ ′ \boldsymbol{B}'' B′′ − B -\boldsymbol{B} B的前m行前m列,是对称常定矩阵, Δ θ , U , Δ P \Delta\boldsymbol{\theta},\boldsymbol{U},\Delta\boldsymbol{P} Δθ,U,ΔP均为m行的列向量。

将上述方程化简,可得:
B ′ Δ θ ~ = Δ P ~ B ′ ′ Δ U = Δ Q ~ \boldsymbol{B}'\Delta\widetilde{\boldsymbol{\theta}}=\Delta\widetilde{\boldsymbol{P}}\\\\ \boldsymbol{B}''\Delta\boldsymbol{U}=\Delta\widetilde{\boldsymbol{Q}} BΔθ =ΔP B′′ΔU=ΔQ

其中, Δ θ ~ = [ U 1 Δ θ 1 U 2 Δ θ 2 ⋯ U n − 1 Δ θ n − 1 ] T \Delta\widetilde{\boldsymbol{\theta}}=[U_1\Delta\theta_1\quad U_2\Delta\theta_2\quad \cdots \quad U_{n-1}\Delta\theta_{n-1}]^T Δθ =[U1Δθ1U2Δθ2Un1Δθn1]T Δ P ~ = [ Δ P 1 / U 1 Δ P 2 / U 2 ⋯ Δ P n − 1 / U n − 1 ] T \Delta\widetilde{\boldsymbol{P}}=[\Delta P_1/U_1\quad \Delta P_2/U_2\quad \cdots \quad \Delta P_{n-1}/U_{n-1}]^T ΔP =[ΔP1/U1ΔP2/U2ΔPn1/Un1]T,\Delta\widetilde{\boldsymbol{Q}}=[\Delta Q_1/U_1\quad \Delta Q_2/U_2\quad \cdots \quad \Delta Q_{m}/U_{m}]^T。第一个方程式为相位修正方程,第二个方程为幅值修正方程。

PQ分解法潮流计算的步骤

计算方法的前三步和牛顿法相同,而后面的迭代过程为:

  1. 形成两个系数矩阵 B ′ , B ′ ′ \boldsymbol{B}',\boldsymbol{B}'' B,B′′,并对他们做三角分解,即Cholesky分解,如下所示:
    B ′ = L ′ D ′ ( L ′ ) T B ′ ′ = L ′ ′ D ′ ′ ( L ′ ′ ) T \boldsymbol{B}'=\boldsymbol{L}'\boldsymbol{D}'(\boldsymbol{L}')^T\\\\ \boldsymbol{B}''=\boldsymbol{L}''\boldsymbol{D}''(\boldsymbol{L}'')^T B=LD(L)TB′′=L′′D′′(L′′)T
  2. 设置迭代次数为k=0。
  3. θ ( k ) , U ( k ) \boldsymbol{\theta}^{(k)},\boldsymbol{U}^{(k)} θ(k),U(k)、各PV节点的电压有效值和平衡节点的电压有效值以及相角,按照有功功率误差的计算公式计算出各个PQ节点和PV节点的 Δ P i ( k ) \Delta P_i^{(k)} ΔPi(k),然后再进一步计算出 Δ P ~ i ( k ) \Delta \widetilde{P}_i^{(k)} ΔP i(k)。这一步不要计算无功功率误差。
  4. 通过前代和回代求解出修正方程的第一个式子,得到各节点的相角修正值 Δ θ i ( k ) ( i = 1 , 2 , ⋯   , n − 1 ) \Delta\theta_i^{(k)}\quad(i=1,2,\cdots,n-1) Δθi(k)(i=1,2,,n1)
  5. 修正各个节点的相角值,即 θ i ( k + 1 ) = θ i ( k ) + Δ θ i ( k ) ( i = 1 , 2 , ⋯   , n − 1 ) \theta_i^{(k+1)}=\theta_i^{(k)}+\Delta\theta_i^{(k)}\quad(i=1,2,\cdots,n-1) θi(k+1)=θi(k)+Δθi(k)(i=1,2,,n1)
  6. 利用 θ ( k + 1 ) , U ( k ) \boldsymbol{\theta}^{(k+1)},\boldsymbol{U}^{(k)} θ(k+1),U(k)、各PV节点的电压有效值和平衡节点的电压有效值以及相角,按照无功功率误差的计算公式计算出各个PQ节点、的 Δ Q i ( k ) \Delta Q_i^{(k)} ΔQi(k),然后再进一步计算出 Δ Q ~ i ( k ) \Delta \widetilde{Q}_i^{(k)} ΔQ i(k)
  7. 通过前代和回代求解出修正方程的第二个式子,得到各节点的电压有效值的修正值 Δ U i ( k ) ( i = 1 , 2 , ⋯   , m ) \Delta U_i^{(k)}\quad(i=1,2,\cdots,m) ΔUi(k)(i=1,2,,m)
  8. 修正各个节点的电压有效值,即 U i ( k + 1 ) = U i ( k ) + Δ U i ( k ) ( i = 1 , 2 , ⋯   , m ) U_i^{(k+1)}=U_i^{(k)}+\Delta U_i^{(k)}\quad(i=1,2,\cdots,m) Ui(k+1)=Ui(k)+ΔUi(k)(i=1,2,,m)
  9. 使用收敛判据判断是否收敛,若收敛,则执行牛顿法潮流计算步骤中的第11步,然后结束,若不收敛,则设置k=k+1,然后返回第2步,进行下一轮的迭代。
  • 5
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值