本文梳理了两篇论文的内容,主题都是在配电网中进行微网划分。第一部分的第一篇文章比较简略,部分过程不够详细,而第二部分第二篇文章比较详细,且增加了新的内容,并对其进行了进一步的阐述。本文使用的变量和参数名称在第一部分和第二部分并不一致,主要是为了和原文保持一致。
灾后配电网分区形成多微网恢复负荷(A New Model for Resilient Distribution Systems by Microgrids Formation)
用于解决配电网分区形成多微网恢复负荷的问题。参考文章[1]Ding T, Lin Y, Li G, et al. A new model for resilient distribution systems by microgrids formation[J]. IEEE Transactions on Power Systems, 2017, 32(5): 4145-4147.
模型约束
运行约束
{
P
D
G
,
j
−
P
L
,
j
=
∑
s
∈
δ
(
j
)
H
j
s
−
∑
i
∈
π
(
j
)
H
i
j
Q
D
G
,
j
−
Q
L
,
j
=
∑
s
∈
δ
(
j
)
G
j
s
−
∑
i
∈
π
(
j
)
G
i
j
,
∀
j
∈
V
(
1
)
\begin{cases} P_{DG,j}-P_{L,j}=\sum_{s\in\delta(j)}H_{js}-\sum_{i\in\pi(j)}H_{ij}\\ Q_{DG,j}-Q_{L,j}=\sum_{s\in\delta(j)}G_{js}-\sum_{i\in\pi(j)}G_{ij} \end{cases} ,\forall j\in\mathcal{V}\quad(1)
{PDG,j−PL,j=∑s∈δ(j)Hjs−∑i∈π(j)HijQDG,j−QL,j=∑s∈δ(j)Gjs−∑i∈π(j)Gij,∀j∈V(1)
公式(1)显示了功率的平衡,其中,
P
D
G
,
j
P_{DG,j}
PDG,j和
Q
D
G
,
j
Q_{DG,j}
QDG,j分别表示节点
j
j
j的DG所发出的有功功率和无功功率。
P
L
,
j
P_{L,j}
PL,j和
Q
L
,
j
Q_{L,j}
QL,j分别表示节点
j
j
j的负荷所消耗的有功功率和无功功率。
H
j
s
H_{js}
Hjs和
G
j
s
G_{js}
Gjs分别表示节点
j
j
j与节点
s
s
s之间的有功功率和无功功率。
δ
(
j
)
\delta(j)
δ(j)和
π
(
j
)
\pi(j)
π(j)分别表示节点
j
j
j的子节点和父节点。
V
\mathcal{V}
V表示所有节点集合。
{
−
M
(
1
−
c
i
j
)
+
(
r
i
j
H
i
j
+
x
i
j
G
i
j
)
/
U
0
≤
U
j
−
U
i
≤
M
(
1
−
c
i
j
)
+
(
r
i
j
H
i
j
+
x
i
j
G
i
j
)
/
U
0
−
S
i
j
max
c
i
j
≤
H
i
j
≤
S
i
j
max
c
i
j
,
−
S
i
j
max
c
i
j
≤
G
i
j
≤
S
i
j
max
c
i
j
,
∀
(
i
,
j
)
∈
E
(
2
)
\begin{cases} -M\left(1-c_{ij}\right)+\left(r_{ij}H_{ij}+x_{ij}G_{ij}\right)/U_{0}\leq U_{j}-U_{i}\\ \leq M\left(1-c_{ij}\right)+\left(r_{ij}H_{ij}+x_{ij}G_{ij}\right)/U_{0}\\ -S_{ij}^{\max}c_{ij}\leq H_{ij}\leq S_{ij}^{\max}c_{ij},-S_{ij}^{\max}c_{ij}\leq G_{ij}\leq S_{ij}^{\max}c_{ij} \end{cases} ,\forall\left(i,j\right)\in\mathcal{E}\quad(2)
⎩
⎨
⎧−M(1−cij)+(rijHij+xijGij)/U0≤Uj−Ui≤M(1−cij)+(rijHij+xijGij)/U0−Sijmaxcij≤Hij≤Sijmaxcij,−Sijmaxcij≤Gij≤Sijmaxcij,∀(i,j)∈E(2)
公式(2)显示了DistFlow方程。具体来说,如果该支路处于闭合状态,则该支路的电压差受潮流约束,支路潮流应被限制;否则,电压差是任意的,支路流必须为零。其中,M是一个足够大的正数,
c
i
j
c_{ij}
cij表示支路
i
j
ij
ij之间是否闭合,
c
i
j
=
1
c_{ij}=1
cij=1为闭合,
c
i
j
=
0
c_{ij}=0
cij=0为断开,
r
i
j
r_{ij}
rij和
x
i
j
x_{ij}
xij分别表示支路
i
j
ij
ij之间的电阻和电抗,
U
0
U_{0}
U0表示基准电压,
U
j
U_{j}
Uj表示节点
j
j
j的电压幅值,
S
i
j
max
S_{ij}^{\max}
Sijmax表示支路
i
j
ij
ij之间的最大潮流。
E
\mathcal{E}
E表示所有支路集合。
这个公式说明了,当该支路处于闭合状态时,即 c i j = 1 c_{ij}=1 cij=1,其潮流应被限制,第一个不等式退化为一个等式,即 ( r i j H i j + x i j G i j ) / U 0 = U j − U i \left(r_{ij}H_{ij}+x_{ij}G_{ij}\right)/U_{0}= U_{j}-U_{i} (rijHij+xijGij)/U0=Uj−Ui;如果没有闭合,即 c i j = 0 c_{ij}=0 cij=0,其潮流可以是任意的,第一个不等式变为 − M ≤ U j − U i ≤ M -M\leq U_{j}-U_{i}\leq M −M≤Uj−Ui≤M,即 U j − U i U_{j}-U_{i} Uj−Ui可以是任意的。第二第三个不等式同理。
U j m i n ≤ U j ≤ U j m a x , j ∈ V \ { D G } ( 3 ) U j = U j 0 , j ∈ { D G } ( 4 ) U_{j}^{\mathrm{min}}\leq U_{j}\leq U_{j}^{\mathrm{max}}\:,\quad j\in\mathcal{V}\backslash\{DG\}\quad(3)\\ U_{j}=U_{j}^{0}\:,\quad j\in\{DG\}\quad(4) Ujmin≤Uj≤Ujmax,j∈V\{DG}(3)Uj=Uj0,j∈{DG}(4)
V \mathcal{V} V表示所有节点集合, { D G } \{DG\} {DG}表示DG节点集合。公式(3)表示除了DG节点之外的节点 j j j的电压幅值应在一个上下限之间,其中, U j m i n U_{j}^{\mathrm{min}} Ujmin和 U j m a x U_{j}^{\mathrm{max}} Ujmax分别表示节点 j j j的电压幅值的下限和上限。公式(4)表示DG节点的电压幅值应等于指定的电压。
P D G , j min ≤ P D G , j ≤ P D G , j max , Q D G , j min ≤ Q D G , j ≤ Q D G , j max , j ∈ { D G } ( 5 ) 0 ≤ P L , j ≤ P L , j 0 , j ∈ V ( 6 ) P_{DG,j}^{\min}\leq P_{DG,j}\leq P_{DG,j}^{\max}\:,\:Q_{DG,j}^{\min}\leq Q_{DG,j}\leq Q_{DG,j}^{\max}\:,\quad j\in\left\{DG\right\}\:(5)\\ 0\leq P_{L,j}\leq P_{L,j}^{0},\quad j\in\mathcal{V}\quad(6) PDG,jmin≤PDG,j≤PDG,jmax,QDG,jmin≤QDG,j≤QDG,jmax,j∈{DG}(5)0≤PL,j≤PL,j0,j∈V(6)
公式(5)表示DG节点的有功和无功功率应在一个上下限之间,其中, P D G , j min P_{DG,j}^{\min} PDG,jmin和 P D G , j max P_{DG,j}^{\max} PDG,jmax分别表示DG节点的有功功率的下限和上限,无功功率同理。公式(6)表示节点 j j j的负荷所消耗的有功功率应小于正常情况下的负荷需求。
拓扑约束
需要满足放射状拓扑约束,经过精简之后为:
- 每个子图为连通图;
- 分支数等于节点数减去给定子图数。
第一个约束可以考虑为:
设计一个具有相同拓扑结构的虚拟网络,在这个网络中,每个子图只有一个电源,而所有其他节点都有单位的负荷需求,由于虚拟网络与原始电力网络具有相同的拓扑结构,因此它们具有相同的连通性。因此,在虚拟网络中每个节点的功率平衡意味着在源节点和所有其他节点之间至少存在一条路径,从而使该子图必须是连通的。源节点是可以任意选取的,在这里我们选择每个微电网中的分布式发电(DG)节点作为源节点。因此,我们有:
∑ s ∈ δ ( j ) F j s − ∑ i ∈ π ( j ) F i j = − 1 , j ∈ V \ { D G } ( 7 ) ∑ s ∈ δ ( j ) F j s − ∑ i ∈ π ( j ) F i j = W j , j ∈ { D G } ( 8 ) \sum_{s\in\delta(j)}F_{js}-\sum_{i\in\pi(j)}F_{ij}=-1,\:j\in\mathcal{V}\backslash\{DG\}\quad(7)\\ \sum_{s\in\delta(j)}F_{js}-\sum_{i\in\pi(j)}F_{ij}=W_{j},\:j\in\{DG\}\quad(8) s∈δ(j)∑Fjs−i∈π(j)∑Fij=−1,j∈V\{DG}(7)s∈δ(j)∑Fjs−i∈π(j)∑Fij=Wj,j∈{DG}(8)
其中, F i j F_{ij} Fij表示虚拟网络中节点 i i i和 j j j之间的流量, W j W_{j} Wj表示虚拟网络中源节点 j j j所供给的总功率。 V \mathcal{V} V表示所有节点集合, { D G } \{DG\} {DG}表示DG节点集合。公式(7)表示除了DG节点之外的节点 j j j都会消耗单位的功率,公式(8)表示DG节点的总流量为 W j W_{j} Wj。
− M c i j ≤ F i j ≤ M c i j ∀ i j ∈ E ( 9 ) − M ( 2 − c i j ) ≤ F i j ≤ M ( 2 − c i j ) ∀ i j ∈ E ( 10 ) W j ≥ 1 j ∈ { D G } ( 11 ) -Mc_{ij}\leq F_{ij}\leq Mc_{ij}\quad\forall ij\in\mathcal{E}\quad(9)\\ -M\left(2-c_{ij}\right)\leq F_{ij}\leq M\left(2-c_{ij}\right)\quad\forall ij\in\mathcal{E}\quad(10)\\ W_j\geq1\quad j\in\{DG\}\quad(11) −Mcij≤Fij≤Mcij∀ij∈E(9)−M(2−cij)≤Fij≤M(2−cij)∀ij∈E(10)Wj≥1j∈{DG}(11)
公式(9)和(10)表示 F i j F_{ij} Fij的上下限。公式(11)表示DG节点的总流量至少为1。
第二个约束可以考虑为:
∑
i
j
∈
E
c
i
j
=
∣
V
∣
−
∣
{
D
G
}
∣
(
12
)
\sum_{ij\in\mathcal{E}}c_{ij}=\begin{vmatrix}\mathcal{V}\end{vmatrix}-\begin{vmatrix}\{DG\}\end{vmatrix}\quad(12)
ij∈E∑cij=
V
−
{DG}
(12)
该约束与文字描述的约束相同。由于每个微电网只包含一个DG,因此微电网的数量与DG的数量相同。
∣
{
D
G
}
∣
\begin{vmatrix}\{DG\}\end{vmatrix}
{DG}
是一个预先设定好的参数。
目标函数
令 w j w_j wj是节点 j j j所连接的负荷的权重, w j w_j wj可以根据节点 j j j的重要性或其他因素进行设置。目标函数可以定义为:
max ∑ j ∈ V w i P L , i ( 13 − a ) s.t. Operation Constraints: (1)-(6) ( 13 − b ) Topology Constraints: (7)-(12) ( 13 − c ) \max\quad\sum_{j\in\mathcal{V}}w_iP_{L,i}\quad(13-a)\\ \text{s.t. Operation Constraints: (1)-(6)}\quad(13-b)\\ \text{Topology Constraints: (7)-(12)}\quad(13-c) maxj∈V∑wiPL,i(13−a)s.t. Operation Constraints: (1)-(6)(13−b)Topology Constraints: (7)-(12)(13−c)
也就是最大化所有节点的负荷需求。
变量总结
本模型包含的变量数有如下表所示:
变量名 | 变量类型 | 所属集合 |
---|---|---|
c i j c_{ij} cij | 0-1变量 | E \mathcal{E} E |
F i j F_{ij} Fij | 连续变量 | E \mathcal{E} E |
U j U_{j} Uj | 连续变量 | V \mathcal{V} V |
P D G , j P_{DG,j} PDG,j | 连续变量 | ∣ { D G } ∣ \begin{vmatrix}\{DG\}\end{vmatrix} {DG} |
Q D G , j Q_{DG,j} QDG,j | 连续变量 | ∣ { D G } ∣ \begin{vmatrix}\{DG\}\end{vmatrix} {DG} |
P L , j P_{L,j} PL,j | 连续变量 | V \mathcal{V} V |
Q L , j Q_{L,j} QL,j | 连续变量 | V \mathcal{V} V |
H j s H_{js} Hjs | 连续变量 | E \mathcal{E} E |
G j s G_{js} Gjs | 连续变量 | E \mathcal{E} E |
W j W_{j} Wj | 连续变量 | ∣ { D G } ∣ \begin{vmatrix}\{DG\}\end{vmatrix} {DG} |
进一步考虑每个微网应存在至少一个可控分布式电源
本文考虑到了包含连结开关的拓扑重构,以及在微网中对于分布式电源使用主从控制。即:
- 考虑主从分布式发电机的弹性微网形成模型,其中每个孤岛只有一个主发电机,以保证系统的自给自足。
- 整个系统的拓扑结构可以通过分段开关和联络开关进行重构,从而使一个馈线上的负荷可以转移到微网形成模型中的另一个馈线上,以恢复更多负荷。
- 另外,采用混合整数二阶锥规划 (MISOCP) 松弛方法来求解所提出的模型。
参考文献[2]Ding T, Lin Y, Bie Z, et al. A resilient microgrid formation strategy for load restoration considering master-slave distributed generators and topology reconfiguration[J]. Applied energy, 2017, 199: 205-216.
约束条件
配电系统条件约束
令 G = ( V , E ) \mathscr{G}=(\mathscr{V},\mathscr{E}) G=(V,E)为配电系统的节点和支路集合,其中 V \mathscr{V} V表示节点集合, E \mathscr{E} E表示支路集合。灾害之后,会有一些线路被破坏而无法使用,即处于打开状态,则令该状态的线路集合为 E 0 \mathscr{E}_0 E0,可见存在关系 E 0 ⊂ E \mathscr{E}_0 \subset \mathscr{E} E0⊂E。设0-1决定变量 y i j y_{ij} yij,代表线路 i j ij ij是否处于打开状态,即 y i j = 1 y_{ij}=1 yij=1表示线路 i j ij ij处于闭合状态, y i j = 0 y_{ij}=0 yij=0表示线路 i j ij ij处于打开状态。则该变量存在以下约束:
y i j = 0 , ∀ i j ∈ E 0 ( 1 ) y_{ij}=0,\quad\forall ij\in\mathscr{E}_0\quad(1) yij=0,∀ij∈E0(1)
主从控制模式表明,每一个微网中只会有一个DG充当主控制单元,其他的DG都充当从属的控制单元。所以微网数量等于主DG控制单元的数量,令 Θ \Theta Θ表示DG主控制节点集合,那么 ∣ Θ ∣ |\Theta| ∣Θ∣就是DG主控制节点的数量。
网络拓扑重构下辐射状的约束
辐射状约束可以总结为:
- 闭合分支的数量等于母线数量减去子图的数量;
- 保证每个子图的连通性;
则第一个可以用下面约束表示:
∑
i
j
∈
E
y
i
j
=
∣
V
∣
−
∣
Θ
∣
−
N
−
R
(
2
)
\sum_{ij \in \mathscr{E}} y_{ij} = |\mathscr{V}| - |\Theta| - N - R\quad(2)
ij∈E∑yij=∣V∣−∣Θ∣−N−R(2)
其中, ∣ V ∣ |\mathscr{V}| ∣V∣是节点的数量, ∣ Θ ∣ |\Theta| ∣Θ∣是DG主控制节点的数量, N N N是变电站的数量, R R R是负荷孤岛的数量,而负荷孤岛就是其所连接的节点既没有变电站也没有DG,仅仅只有用电负荷。
由下图可见, N N N实际上是一个提前设定好的参数,而 R R R和故障线的位置、联结开关和DG的位置有关:
想要确定负荷孤岛的数量 R R R,相当于找到只包含负载母线的连通分量的数量。无向图的连通分量是该图的连通子图,如果无向图是连通图,则只有一个连通分量。如果有多个连通分量,则可以使用深度优先搜索或广度优先搜索等遍历算法来找到无向图的连通分量。从顶点开始遍历后,将访问从该顶点可达的所有顶点,如果还有其他连通分量,则在这一次遍历完成后仍然会有未访问的顶点。从这些未访问顶点中的一个开始,可以找到另一个连通分量。如果继续此过程,直到访问所有顶点,就可以识别出所有连通分量。这个过程的算法如下所示:
from collections import deque
def find_connected_components(graph):
visited = [False] * len(graph)
compNum = 0
for i in range(len(graph)):
if not visited[i]:
compNum += 1
q = deque()
q.append(i)
visited[i] = True
while q:
w = q.popleft()
for k in graph[w]:
if not visited[k]:
visited[k] = True
q.append(k)
return compNum
# 示例图(邻接表形式)
graph = [
[1, 2],
[0, 3],
[0, 4],
[1],
[2],
[6],
[5]
]
print(find_connected_components(graph))
可见,在输入邻接表形式的示例图之后,得到的结果为2,即该图有两个连通分量。
第二个情况可以用下面约束表示,原因在上一章已经阐述过:
∑ s ∈ δ ( j ) F j s − ∑ i ∈ π ( j ) F i j = − 1 , j ∈ V ∖ Π ( 3 ) ∑ s ∈ δ ( j ) F j s − ∑ i ∈ π ( j ) F i j = W j , j ∈ Π ( 4 ) − M y i j ⩽ F i j ⩽ M y i j , ∀ i j ∈ E ( 5 ) − M ( 2 − y i j ) ⩽ F i j ⩽ M ( 2 − y i j ) , ∀ i j ∈ E ( 6 ) W j ⩾ 1 , j ∈ Π ( 7 ) \sum_{s\in\delta(j)}F_{js}-\sum_{i\in\pi(j)}F_{ij}=-1,\quad j\in \mathscr{V}\setminus\Pi \quad(3) \\ \sum_{s\in\delta(j)}F_{js}-\sum_{i\in\pi(j)}F_{ij}=W_j,\quad j\in\Pi\quad(4) \\ -My_{ij}\leqslant F_{ij}\leqslant My_{ij},\quad\forall ij\in \mathscr{E} \quad(5) \\ -M(2-y_{ij})\leqslant F_{ij}\leqslant M(2-y_{ij}),\quad\forall ij\in\mathscr{E} \quad(6)\\ W_j\geqslant1,\quad j\in\Pi \quad(7) s∈δ(j)∑Fjs−i∈π(j)∑Fij=−1,j∈V∖Π(3)s∈δ(j)∑Fjs−i∈π(j)∑Fij=Wj,j∈Π(4)−Myij⩽Fij⩽Myij,∀ij∈E(5)−M(2−yij)⩽Fij⩽M(2−yij),∀ij∈E(6)Wj⩾1,j∈Π(7)
其中, F i j F_{ij} Fij是在虚构的配电线ij上的流量, W j W_j Wj是虚构的网络中,电源所共计的总功率。 Π \Pi Π是全体DG的集合。 δ ( j ) \delta(j) δ(j)是节点j的子节点集合, π ( j ) \pi(j) π(j)是节点j的父节点集合。 M M M是一个足够大的正数。
微网形成的约束
微网形成问题可以视为一个图划分问题。将 G \mathscr{G} G分割成 N P N_P NP个子图 G i = ( V i , E i ) i = 1 , 2 … N P \mathscr{G}_i=(\mathscr{V}_i,\mathscr{E}_i)\,i=1,2\dots N_P Gi=(Vi,Ei)i=1,2…NP,则有 G = G 1 ∪ G 2 … ∪ G N p \mathscr{G}=\mathscr{G}_1\cup\mathscr{G}_2\ldots\cup\mathscr{G}_{N_p} G=G1∪G2…∪GNp,且 G i ∩ G j = ∅ , ∀ i ≠ j {\mathscr{G}}_i\cap\mathscr{G}_j=\varnothing\,,\,\forall i\neq j Gi∩Gj=∅,∀i=j。同样可以表示为, V = V 1 ∪ V 2 … ∪ V N p , V i ≠ ∅ \mathscr{V}=\mathscr{V}_1\cup \mathscr{V}_2\ldots\cup \mathscr{V}_{N_p},\mathscr{V}_i\neq\varnothing V=V1∪V2…∪VNp,Vi=∅,并且 V i ∩ V j = ∅ , ∀ i ≠ j \mathscr{V}_i\cap\mathscr{V}_j=\varnothing\,,\,{\forall i}\neq j Vi∩Vj=∅,∀i=j。
那么通过切割之后,所有的微网的节点形成了一个割集 ( V 1 , V 2 , … , V N p ) (\mathscr{V}_1,\mathscr{V}_2,\dots,\mathscr{V}_{N_p}) (V1,V2,…,VNp),定义支路集合 E b ⊆ E \mathscr{E}_b\subseteq\mathscr{E} Eb⊆E,集合中的所有支路一边连接的节点是 V i \mathscr{V_i} Vi,另一边是 V j \mathscr{V_j} Vj,且 i ≠ j i \neq j i=j。
对于每个微网,都需要满足功率流约束。这组方程式被称为分支潮流模型,具体如下:
{ P D G , j − P L , j = ∑ k ∈ δ ( j ) H j k − ∑ i ∈ π ( j ) ( H i j − r i j l i j ) , ∀ j ∈ V Q D G , j − Q L , j = ∑ k ∈ δ ( j ) G j k − ∑ i ∈ π ( j ) ( G i j − x i j l i j ) + b s j u j , ∀ j ∈ V u j = u i − 2 ( r i j H i j + x i j G i j ) + ( r i j 2 + x i j 2 ) l i j , ∀ ( i , j ) ∈ E H i j 2 + G i j 2 = l i j u i , ∀ ( i , j ) ∈ E ( 8 ) \begin{cases} P_{DG,j} - P_{L,j} = \sum_{k \in \delta(j)} H_{jk} - \sum_{i \in \pi(j)} (H_{ij} - r_{ij} l_{ij}), \quad \forall j \in \mathscr{V} \\ Q_{DG,j} - Q_{L,j} = \sum_{k \in \delta(j)} G_{jk} - \sum_{i \in \pi(j)} (G_{ij} - x_{ij} l_{ij}) + b_{s_j} u_j, \quad \forall j \in \mathscr{V} \\ u_j = u_i - 2(r_{ij} H_{ij} + x_{ij} G_{ij}) + (r_{ij}^2 + x_{ij}^2) l_{ij}, \quad \forall (i,j) \in \mathscr{E} \\ H_{ij}^2 + G_{ij}^2 = l_{ij} u_i, \quad \forall (i,j) \in \mathscr{E} \end{cases} \quad(8) ⎩ ⎨ ⎧PDG,j−PL,j=∑k∈δ(j)Hjk−∑i∈π(j)(Hij−rijlij),∀j∈VQDG,j−QL,j=∑k∈δ(j)Gjk−∑i∈π(j)(Gij−xijlij)+bsjuj,∀j∈Vuj=ui−2(rijHij+xijGij)+(rij2+xij2)lij,∀(i,j)∈EHij2+Gij2=lijui,∀(i,j)∈E(8)
其中, P D G , j P_{DG,j} PDG,j和 Q D G , j Q_{DG,j} QDG,j分别表示节点 j j j的DG所发出的有功功率和无功功率, P L , j P_{L,j} PL,j和 Q L , j Q_{L,j} QL,j分别表示节点 j j j的负荷所消耗的有功功率和无功功率, H i j H_{ij} Hij和 G i j G_{ij} Gij分别表示节点 i i i和节点 j j j之间的有功功率和无功功率, u i u_i ui表示节点 i i i的电压幅值平方, l i j l_{ij} lij表示支路 i j ij ij上的电流平方, b s j b_{s_j} bsj连接到母线 j j j的充电电容大小, r i j r_{ij} rij和 x i j x_{ij} xij分别表示支路 i j ij ij上的电阻和电抗。
直观地说,如果支路 i j ij ij断开,那么分支电流和分支潮流都应该为零,即 H i j H_{ij} Hij, G i j , l i j G_{ij},l_{ij} Gij,lij都为零,且这两个节点之间的电压幅值不受到公式(8)中的第三个公式的约束。可见,属于割集的边应该被断开,因此,每个微网功率流方程的分割约束可以表示为:
{ P D G , j − P L , j = ∑ k ∈ δ ( j ) H j k − ∑ i ∈ π ( j ) ( H i j − r i j I i j ) , ∀ j ∈ V Q D G , j − Q L , j = ∑ k ∈ δ ( j ) G j k − ∑ i ∈ π ( j ) ( G i j − x i j I i j ) + b s u j , ∀ j ∈ V ( 9 ) u j − u i = { − 2 ( r i j H i j + x i j G i j ) + ( r i j 2 + x i j 2 ) I i j if ( i , j ) ∈ E ∩ y i j = 1 arbitrary otherwise ( 10 ) G i j or H i j : { ∈ [ − S i j max , S i j max ] if ( i , j ) ∈ E ∩ y i j = 1 = 0 otherwise ( 11 ) l i j : { ∈ [ 0 , l i j max ] i f ( i , j ) ∈ E ∩ y i j = 1 = 0 otherwise ( 12 ) \begin{cases} P_{DG,j} - P_{L,j} = \displaystyle\sum_{k \in \delta(j)} H_{jk} - \displaystyle\sum_{i \in \pi(j)} (H_{ij} - r_{ij} I_{ij}), \quad \forall j \in \mathscr{V} \\ Q_{DG,j} - Q_{L,j} = \displaystyle\sum_{k \in \delta(j)} G_{jk} - \displaystyle\sum_{i \in \pi(j)} (G_{ij} - x_{ij} I_{ij}) + b_s u_j, \quad \forall j \in \mathscr{V} \end{cases} \quad(9)\\ u_j - u_i = \begin{cases} -2(r_{ij}H_{ij} + x_{ij}G_{ij}) + (r_{ij}^2 + x_{ij}^2)I_{ij} & \text{if} (i,j) \in \mathscr{E} \cap y_{ij} = 1 \\ \text{arbitrary} & \text{otherwise} \end{cases} \quad(10)\\ G_{ij} \,\text{or}\, H_{ij}: \begin{cases} \in [-S_{ij}^{\text{max}}, S_{ij}^{\text{max}}] & \text{if} (i,j) \in \mathscr{E} \cap y_{ij} = 1 \\ = 0 & \text{otherwise} \end{cases} \quad(11)\\ l_{ij}: \begin{cases} \in [0, l_{ij}^{\text{max}}] & if (i,j) \in \mathscr{E} \cap y_{ij} = 1 \\ = 0 & \text{otherwise} \end{cases} \quad(12) ⎩ ⎨ ⎧PDG,j−PL,j=k∈δ(j)∑Hjk−i∈π(j)∑(Hij−rijIij),∀j∈VQDG,j−QL,j=k∈δ(j)∑Gjk−i∈π(j)∑(Gij−xijIij)+bsuj,∀j∈V(9)uj−ui={−2(rijHij+xijGij)+(rij2+xij2)Iijarbitraryif(i,j)∈E∩yij=1otherwise(10)GijorHij:{∈[−Sijmax,Sijmax]=0if(i,j)∈E∩yij=1otherwise(11)lij:{∈[0,lijmax]=0if(i,j)∈E∩yij=1otherwise(12)
其中, S i j max S_{ij}^{\text{max}} Sijmax是支路 i j ij ij上的最大允许潮流, l i j max l_{ij}^{\text{max}} lijmax是支路 i j ij ij上的最大允许电流平方。
然而,约束(10)-(12)是“if-else”类型的约束,意味着一次只能有一个约束成立。这些约束可以使用大M方法等价地转换为一系列仿射约束,如下所示:
{
−
M
(
1
−
y
i
j
)
≤
u
j
−
u
i
+
2
(
r
i
j
H
i
j
+
x
i
j
G
i
j
)
−
(
r
i
j
2
+
x
i
j
2
)
l
i
j
≤
M
(
1
−
y
i
j
)
−
S
i
j
max
y
i
j
≤
H
i
j
≤
S
i
j
max
y
i
j
,
−
S
i
j
max
y
i
j
≤
G
i
j
≤
S
i
j
max
y
i
j
0
≤
l
i
j
≤
(
l
i
j
max
)
2
y
i
j
,
∀
(
i
,
j
)
∈
E
(
13
)
H
i
j
2
+
G
i
j
2
=
l
i
j
u
i
,
∀
(
i
,
j
)
∈
E
(
14
)
\begin{cases} -M(1-y_{ij}) \leq u_j - u_i + 2(r_{ij}H_{ij} + x_{ij}G_{ij}) - (r_{ij}^2 + x_{ij}^2)l_{ij} \leq M(1-y_{ij}) \\ -S_{ij}^{\max}y_{ij} \leq H_{ij} \leq S_{ij}^{\max}y_{ij}, -S_{ij}^{\max}y_{ij} \leq G_{ij} \leq S_{ij}^{\max}y_{ij} \\ 0 \leq l_{ij} \leq (l_{ij}^{\max})^2y_{ij} \end{cases}, \forall (i,j) \in \mathscr{E} \quad(13)\\ H_{ij}^2 + G_{ij}^2 = l_{ij}u_i, \quad \forall (i,j) \in \mathscr{E} \quad(14)
⎩
⎨
⎧−M(1−yij)≤uj−ui+2(rijHij+xijGij)−(rij2+xij2)lij≤M(1−yij)−Sijmaxyij≤Hij≤Sijmaxyij,−Sijmaxyij≤Gij≤Sijmaxyij0≤lij≤(lijmax)2yij,∀(i,j)∈E(13)Hij2+Gij2=lijui,∀(i,j)∈E(14)
如果 y i j = 1 y_{ij}=1 yij=1,则约束(10)-(12)成立的第一个约束成立,否则约束(10)-(12)的第二个约束成立。
配电系统物理约束
{ ( P D G , j , Q D G , j ) ∣ ∣ Q D G , j ∣ ≤ P D G , j tan ( cos − 1 θ j ) P D G , j 2 + Q D G , j 2 ≤ ( S D G , j max ) 2 0 ≤ P D G , j ≤ P D G , j 0 } , ∀ j ∈ Π ( 15 ) ( U j min ) 2 ≤ u j ≤ ( U j max ) 2 , ∀ j ∈ V ∖ Θ ( 16 ) u j = ( U j 0 ) 2 , ∀ j ∈ Θ ( 17 ) { 0 ≤ P L , j ≤ P L , j 0 Q L , j = P L , j tan ( cos − 1 α j ) , ∀ j ∈ V ( 18 ) \left\{ (P_{DG,j}, Q_{DG,j}) \left| \begin{aligned} & |Q_{DG,j}| \leq P_{DG,j} \tan(\cos^{-1} \theta_j) \\ & P_{DG,j}^2 + Q_{DG,j}^2 \leq (S_{DG,j}^{\max})^2 \\ & 0 \leq P_{DG,j} \leq P_{DG,j}^0 \end{aligned} \right. \right\}, \forall j \in \Pi \quad(15)\\ (U_j^{\min})^2 \leq u_j \leq (U_j^{\max})^2, \quad \forall j \in \mathscr{V} \setminus \Theta \quad(16)\\ u_j = (U_j^0)^2, \quad \forall j \in \Theta \quad(17)\\ \begin{cases} 0 \leq P_{L,j} \leq P_{L,j}^0 \\ Q_{L,j} = P_{L,j} \tan(\cos^{-1} \alpha_j) \end{cases}, \quad \forall j \in \mathscr{V} \quad(18) ⎩ ⎨ ⎧(PDG,j,QDG,j) ∣QDG,j∣≤PDG,jtan(cos−1θj)PDG,j2+QDG,j2≤(SDG,jmax)20≤PDG,j≤PDG,j0⎭ ⎬ ⎫,∀j∈Π(15)(Ujmin)2≤uj≤(Ujmax)2,∀j∈V∖Θ(16)uj=(Uj0)2,∀j∈Θ(17){0≤PL,j≤PL,j0QL,j=PL,jtan(cos−1αj),∀j∈V(18)
其中, θ j \theta_j θj表示第 j j j个DG的最大功率因数角, S D G , j max S_{DG,j}^{\max} SDG,jmax表示第 j j j个DG的最大容量, P D G , j 0 P_{DG,j}^0 PDG,j0表示第 j j j个DG的正常情况输出有功功率, U j 0 U_j^0 Uj0表示第 j j j个母线上的主控DG的给定电压幅值, U j min , U j max U_j^{\min},U_j^{\max} Ujmin,Ujmax分别表示第 j j j个母线上的电压幅值的上下限, P L , j 0 P_{L,j}^0 PL,j0表示第 j j j个负载需求的最大有功功率, α j \alpha_j αj表示第 j j j个负载需求的功率因数角。
其中,约束(15)描述了每个DG的可行域;约束(16)和(17)规定了电压幅值的限制;约束(18)暗示了有功和无功功率应同时削减,并且应保持每个负荷的功率因数。
目标函数
令
w
j
w_j
wj是负荷的优先级,则目标函数为:
max
∑
j
∈
V
w
j
P
L
,
j
(
19.
a
)
s.t.
Constraints
(
2
)
−
(
7
)
,
(
9
)
,
(
13
)
−
(
18
)
(
19.
b
)
\max \quad \sum_{j \in \mathscr{V}} w_j P_{L,j}\quad(19.\text{a}) \\ \text{s.t.} \quad \text{Constraints}(2)-(7), (9), (13)-(18)\quad(19.\text{b})
maxj∈V∑wjPL,j(19.a)s.t.Constraints(2)−(7),(9),(13)−(18)(19.b)
凸松弛求解方法
上述问题是一个混合整数非线性非凸的规划(MINNP)问题,关键在于约束(14)是非线性的。可以使用凸松弛方法来找到最优潮流中一个较好的近似解。这可以通过将问题重新表述为连续变量的凸二次锥规划来实现,整个问题可以表述为一个混合整数二阶锥规划 (MISOCP)。
对于二次等式,可以将其松弛为不等式来得到锥松弛,如下所示:
H
i
j
2
+
G
i
j
2
⩽
l
i
j
u
i
,
∀
(
i
,
j
)
∈
E
(
20
)
H_{ij}^2 + G_{ij}^2 \leqslant l_{ij}u_i, \quad \forall (i,j) \in \mathscr{E} \quad(20)
Hij2+Gij2⩽lijui,∀(i,j)∈E(20)
虽然约束被松弛了,但原有的等式约束仍然存在在其中,所以不会损失这一部分约束。
进一步,上述公式可以被重新化为一个二阶锥公式,如下所示:
∥
[
2
H
i
j
2
G
i
j
l
i
j
−
u
i
]
∥
2
≤
l
i
j
+
u
i
,
∀
(
i
,
j
)
∈
E
(
21
)
\left\| \begin{bmatrix} 2H_{ij} \\ 2G_{ij} \\ l_{ij} - u_i \end{bmatrix} \right\|_2 \leq l_{ij} + u_i, \quad \forall (i,j) \in \mathscr{E} \quad(21)
2Hij2Gijlij−ui
2≤lij+ui,∀(i,j)∈E(21)
也就是将约束(21)中左侧的三维向量,求取其二阶范数,可得:
(
2
H
i
j
)
2
+
(
2
G
i
j
)
2
+
(
l
i
j
−
u
i
)
2
≤
l
i
j
+
u
i
\sqrt{(2H_{ij})^2 + (2G_{ij})^2 + (l_{ij} - u_i)^2} \leq l_{ij} + u_i
(2Hij)2+(2Gij)2+(lij−ui)2≤lij+ui
两边都是正数,将两边同时进行平方,可得:
(
2
H
i
j
)
2
+
(
2
G
i
j
)
2
+
(
l
i
j
−
u
i
)
2
≤
(
l
i
j
+
u
i
)
2
⇒
4
H
i
j
2
+
4
G
i
j
2
+
l
i
j
2
−
2
l
i
j
u
i
+
u
i
2
≤
l
i
j
2
+
2
l
i
j
u
i
+
u
i
2
(2H_{ij})^2 + (2G_{ij})^2 + (l_{ij} - u_i)^2 \leq (l_{ij} + u_i)^2\\ \Rightarrow 4H_{ij}^2 + 4G_{ij}^2 + l_{ij}^2 - 2l_{ij}u_i + u_i^2 \leq l_{ij}^2 + 2l_{ij}u_i + u_i^2\\
(2Hij)2+(2Gij)2+(lij−ui)2≤(lij+ui)2⇒4Hij2+4Gij2+lij2−2lijui+ui2≤lij2+2lijui+ui2
经过整理之后就可见约束(21)与约束(20)是等价的。
那么,最终的模型就可以得到如下所示:
max
∑
j
∈
V
w
j
P
L
,
j
(
22.
a
)
s.t.
Constraints
(
2
)
−
(
7
)
,
(
9
)
,
(
13
)
,
(
15
)
−
(
18
)
and
(
21
)
(
22.
b
)
\max \quad \sum_{j \in \mathscr{V}} w_j P_{L,j}\quad(22.\text{a}) \\ \text{s.t.} \quad \text{Constraints}(2)-(7), (9), (13) , (15)-(18) \text{and} (21) \quad(22.\text{b})
maxj∈V∑wjPL,j(22.a)s.t.Constraints(2)−(7),(9),(13),(15)−(18)and(21)(22.b)
二阶锥松弛评估
为了评估二阶锥松弛的准确性,一个松弛间隙误差定义为:
Gap
=
max
∀
(
i
,
j
)
∈
E
∣
H
i
j
2
+
G
i
j
2
−
l
i
j
u
i
∣
\text{Gap}=\max_{\forall (i,j) \in \mathscr{E}} |H_{ij}^2+G_{ij}^2-l_{ij}u_i|
Gap=∀(i,j)∈Emax∣Hij2+Gij2−lijui∣
实际上就是将约束(21)中的两侧项移到一边,然后计算计算其差的最大值,如果其间隙差十分接近于0,那么就可以认为该松弛是很精确的。
经过论文[2]的测试,得到其最大间隙为 1 0 − 4 10^{-4} 10−4左右,十分接近于0,这说明二阶锥松弛和原始的非凸模型几乎完全匹配,从而保证了最优性。
变量与参数总结
变量表如下
变量名 | 变量说明 |
---|---|
y i j y_{ij} yij | 二元变量,节点 i i i到节点 j j j的连接状态 |
u i u_i ui | 节点 i i i的电压幅值平方 |
H i j H_{ij} Hij | 配电线路 i j ij ij上的有功潮流 |
G i j G_{ij} Gij | 配电线路 i j ij ij上的无功潮流 |
l i j l_{ij} lij | 支路 i j ij ij上的电流平方 |
P D G , j P_{DG,j} PDG,j | DG节点 j j j的输出有功功率 |
Q D G , j Q_{DG,j} QDG,j | DG节点 j j j的输出无功功率 |
P L , j P_{L,j} PL,j | 节点 j j j的负荷所消耗的有功功率 |
Q L , j Q_{L,j} QL,j | 节点 j j j的负荷所消耗的无功功率 |
F i j F_{ij} Fij | 配电线路 i j ij ij上的虚构潮流 |
W j W_j Wj | 虚构网络中源节点所供给的功率 |
参数表如下
参数名 | 参数说明 | 参数名 | 参数说明 |
---|---|---|---|
i , j , s , k i,j,s,k i,j,s,k | 节点的编号 | i j ij ij | 节点 i i i和节点 j j j之间的支路编号 |
E \mathscr{E} E | 网络中所有支路的集合 | Π \Pi Π | 网络中所有DG节点的集合 |
E o \mathscr{E}_o Eo | 网络中所有断开支路的集合 | V \mathscr{V} V | 网络中所有节点的集合 |
Θ \Theta Θ | 主控DG节点的集合 | δ ( j ) \delta(j) δ(j) | 节点j的子节点集合 |
π ( j ) \pi(j) π(j) | 节点j的父节点集合 | ∣ E ∣ \lvert\mathscr{E}\lvert ∣E∣ | 网络中全部支路的数量 |
∣ V ∣ \lvert\mathscr{V}\lvert ∣V∣ | 网络中全部节点的数量 | ∣ Π ∣ \lvert\Pi\lvert ∣Π∣ | 网络中全部DG节点的数量 |
∣ Θ ∣ \lvert\Theta\lvert ∣Θ∣ | 网络中全部主控DG节点的数量 | r i j r_{ij} rij | 支路 i j ij ij上的电阻 |
x i j x_{ij} xij | 支路 i j ij ij上的电抗 | b s j b_{s_j} bsj | 节点 j j j的充电电容大小 |
P L , j 0 P_{L,j}^0 PL,j0 | 节点 j j j的负荷所消耗的正常有功功率 | Q L , j 0 Q_{L,j}^0 QL,j0 | 节点 j j j的负荷所消耗的正常无功功率 |
P D G , j 0 P_{DG,j}^0 PDG,j0 | 第 j j j个DG的正常情况输出有功功率 | U j 0 U_j^0 Uj0 | 第 j j j个母线上的主控DG的给定电压幅值 |
θ j \theta_j θj | 第 j j j个DG的最大功率因数角 | S D G , j max S_{DG,j}^{\max} SDG,jmax | 第 j j j个DG的最大容量 |
S i j max S_{ij}^{\max} Sijmax | 支路 i j ij ij上的最大容量 | I i j max I_{ij}^{\max} Iijmax | 支路 i j ij ij上的最大电流 |
N N N | 变电站的数量 | R R R | 负荷孤岛的数量 |
w j w_j wj | 负荷的优先级 | M M M | 一个足够大的正数 |
α j \alpha_j αj | 第 j j j个负载需求的功率因数角 |