Day02-线性代数-矩阵(DataWhale)

本文深入探讨了矩阵的各个方面,包括矩阵的概念、性质、运算和特殊类型的矩阵,如对称矩阵、伴随矩阵、逆矩阵。还介绍了矩阵在解决线性方程组、求逆、行列式计算及初等变换中的应用。此外,讨论了矩阵的秩和等价关系,以及如何通过初等变换求解逆矩阵。矩阵的秩决定了方阵是否可逆,对于满秩矩阵,其逆矩阵存在且可通过初等变换求得。
摘要由CSDN通过智能技术生成

二、矩阵

2.1 概念

同型矩阵:两个矩阵的行数相等、列数也相等

非齐次线性方程组
{ a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 . . . . . . a m 1 x 1 + a m 2 x 2 + . . . + a m n x n = b m \begin{cases} a_{11}x_1+a_{12}x_2+...+a_{1n}x_n =b_1 \\ a_{21}x_1+a_{22}x_2+...+a_{2n}x_n =b_2\\ ......\\ a_{m1}x_1+a_{m2}x_2+...+a_{mn}x_n =b_m \end{cases} a11x1+a12x2+...+a1nxn=b1a21x1+a22x2+...+a2nxn=b2......am1x1+am2x2+...+amnxn=bm

系数矩阵 A = ( a i j ) A=(a_{ij}) A=(aij)

未知系数矩阵

x = ( x 1 x 2 . . . x n ) x= \left( \begin{matrix} x_1 \\ x_2\\ ...\\ x_n \end{matrix} \right) x=x1x2...xn

常数项矩阵

b = ( b 1 b 2 . . . b n ) b= \left( \begin{matrix} b_1 \\ b_2\\ ...\\ b_n \end{matrix} \right) b=b1b2...bn

增广矩阵

B = ( a 11 a 12 . . . a 1 n b 1 a 21 a 22 . . . a 2 n b 2 . . . . . . . . . . . . a m 1 a m 2 . . . a m n b m ) B= \left( \begin{matrix} a_{11} & a_{12} & ...& a_{1n} & b_1 \\ a_{21} & a_{22} & ...& a_{2n} & b_2 \\ ... & ... & & ... & ...\\ a_{m1} & a_{m2} & ...& a_{mn} & b_m \\ \end{matrix} \right) B=a11a21...am1a12a22...am2.........a1na2n...amnb1b2...bm

对称矩阵

A为n阶方阵,如果 A T = A A^T=A AT=A,即 a i j = a j i a_{ij}=a_{ji} aij=aji,则A为对称矩阵。元素以对角线为对称轴对应相等。

伴随矩阵

行列式 ∣ A ∣ |A| A的各个元素的代数余子式 A i j A_{ij} Aij构成的矩阵
【注意排列的顺序与矩阵不同】 A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=|A|E AA=AA=AE==
A ∗ = ( A 11 A 21 . . . A n 1 A 12 A 22 . . . A n 2 . . . . . . . . . A 1 n A 2 n . . . A n n ) A^*= \left( \begin{matrix} A_{11} & A_{21} & ... & A_{n1}\\ A_{12} & A_{22} & ... & A_{n2}\\ ... & ... & & ...\\ A_{1n} & A_{2n} & ... & A_{nn}\\ \end{matrix} \right) A=A11A12...A1nA21A22...A2n.........An1An2...Ann
公式:

  • A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=|A|E AA=AA=AE

  • A ∗ = ∣ A ∣ A − 1 A^*=|A|A^{-1} A=AA1

  • ∣ A ∗ ∣ = ∣ A ∣ n − 1 |A^*|=|A|^{n-1} A=An1

  • ( A ∗ ) − 1 = ( A − 1 ) ∗ = 1 ∣ A ∣ A (A^*)^{-1}=(A^{-1})^*=\frac{1}{|A|}A (A)1=(A1)=A1A

  • ( A ∗ ) T = ( A T ) ∗ (A^*)^T=(A^T)^* (A)T=(AT)

  • ( k A ) ∗ = k n − 1 A ∗ (kA)^*=k^{n-1}A^* (kA)=kn1A

  • ( A ∗ ) ∗ = ∣ A ∣ n − 2 A (A^*)^*=|A|^{n-2}A (A)=An2A

  • r ( A ∗ ) = { n , r ( A ) = n 1 , r ( A ) = n − 1 0 , r ( A ) < n − 1 r(A^*)= \begin{cases} n, & r(A)=n \\ 1, & r(A)=n-1 \\ 0, & r(A)<n-1 \end{cases} r(A)=n,1,0,r(A)=nr(A)=n1r(A)<n1

逆矩阵【首先要是方阵】

AB=BA=E (B是A的逆矩阵), A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\frac{1}{|A|}A^* A1=A1A

A是可逆矩阵的充要条件是: ∣ A ∣ ≠ 0 |A|\neq 0 A=0

A是可逆矩阵的充要条件是: A A A的标准型为 E E E

A是可逆的充要条件是: A A A等于初等方阵的乘积

如果A是可逆的,A的逆矩阵是唯一

公式:

  • ( A − 1 ) − 1 = A (A^{-1})^{-1} = A (A1)1=A
  • ( k A ) − 1 = 1 k A − 1 (kA)^{-1} =\frac{1}{k}A^{-1} (kA)1=k1A1
  • ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1
  • ( A n ) − 1 = ( A − 1 ) n (A^n)^{-1}=(A^{-1})^n (An)1=(A1)n
  • ( A − 1 ) T = ( A T ) − 1 (A^{-1})^T=(A^T)^{-1} (A1)T=(AT)1
  • ∣ A − 1 ∣ = 1 ∣ A ∣ |A^{-1}|=\frac{1}{|A|} A1=A1
  • A − 1 = 1 A A ∗ A^{-1} = \frac{1}{A}A^* A1=A1A

奇异矩阵

∣ A ∣ ≠ 0 |A|\neq0 A=0:A是非奇异矩阵

∣ A ∣ = 0 |A|=0 A=0:A是奇异矩阵

矩阵A的m次多项式

φ ( x ) = a 0 + a 1 x + . . . + a m x m \varphi(x)= a_0+a_1x+...+a_mx^m φ(x)=a0+a1x+...+amxm x x x m m m 次多项式,A 为n阶矩阵,记:

φ ( A ) = a 0 E + a 1 A + a 2 A 2 + . . . + a m A m \varphi(A)=a_0E+a_1A+a_2A^2+...+a_mA^m φ(A)=a0E+a1A+a2A2+...+amAm 为矩阵A的m次多项式

行阶梯矩阵

  • 若有零行,零行在非零行的下边
  • 左起首非零元左边零的个数随行数增加而严格增加

行简化阶梯形矩阵

  • 是阶梯形

  • 非零行的首非零元素是1

  • 首非零元所在的列的其余元素是0

( 1 0 0 5 0 1 0 4 0 0 1 7 0 0 0 0 ) \left( \begin{matrix} 1 & 0 & 0 & 5 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 7 \\ 0 & 0 & 0 & 0 \end{matrix} \right) 1000010000105470

正交矩阵:满足 A A T = A T A = E AA^T=A^TA=E AAT=ATA=E

2.2 矩阵运算
  • A+B=B+A
  • (A+B)+C=A+(B+C)
  • ( λ μ ) (\lambda \mu) (λμ)A= λ ( μ \lambda (\mu λ(μA)
  • ( λ + μ \lambda + \mu λ+μ)A = λ \lambda λA+ μ \mu μA
  • λ \lambda λ(A+B)= λ \lambda λA+ λ \lambda λB
  • (AB)C=A(BC)
  • λ \lambda λ(AB)=( λ \lambda λA)B=A( λ \lambda λB)
  • A(B+C)=AB+AC
  • (B+C)A=AB+CA

注意:左乘和右乘不能交换位置 A m 1 × n B n × m 2 = C m 1 × m 2 A_{m_1\times n}B_{n\times m_2}=C_{m_1 \times m_2} Am1×nBn×m2=Cm1×m2

1) A B = 0 不 能 推 出 A = 0 或 B = 0 AB=0不能推出A=0或B=0 AB=0A=0B=0

2) A B = A C , A ≠ 0 , 如 果 A 满 秩 , 即 ∣ A ∣ ≠ 0 , 可 以 推 出 B = C , 否 则 不 能 推 出 B = C AB=AC,A\neq0,如果A满秩,即|A|\neq 0,可以推出B=C,否则不能推出B=C AB=AC,A=0,AA=0B=CB=C

2.3 转置
  • ( A T ) T = A (A^T)^T=A (AT)T=A
  • ( A + B ) T = A T + B T (A+B)^T=A^T+B^T (A+B)T=AT+BT
  • ( λ A ) T = λ A T (\lambda A)^T=\lambda A^T (λA)T=λAT
  • ( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT 【注意位置交换】
2.4 方阵的行列式
  • ∣ A T ∣ = ∣ A ∣ |A^T|=|A| AT=A
  • ∣ λ A ∣ = λ n ∣ A ∣ |\lambda A|=\lambda ^n|A| λA=λnA
  • ∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB|=|A||B| AB=AB
2.5 逆矩阵
  • A可逆, A − 1 A^{-1} A1也可逆, ( A − 1 ) − 1 = A (A^{-1})^{-1}=A (A1)1=A
  • ( λ A ) − 1 = 1 λ A − 1 (\lambda A)^{-1} = \frac{1}{\lambda}A^{-1} (λA)1=λ1A1
  • A、B为同阶矩阵且均可逆,则AB也可逆,且 ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1
  • A 可逆,则 A T A^T AT 亦可逆,且 ( A T ) − 1 = ( A − 1 ) T (A^T)^{-1}=(A^{-1})^T (AT)1=(A1)T

【求逆矩阵:

  1. 在 A 的 右 边 加 入 一 个 单 位 矩 阵 E 组 成 [ A E ] , 然 后 运 用 初 等 行 变 换 , 将 A 化 成 单 位 矩 阵 的 时 候 , 右 边 的 E 变 为 A − 1 在A的右边加入一个单位矩阵E组成[AE],然后运用初等行变换,将A化成单位矩阵的时候,右边的E变为A^{-1} AE[AE]AEA1
  2. A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\frac{1}{|A|}A^* A1=A1A
2.6 矩阵的多项式

φ ( A ) = a 0 E + a 1 A + a 2 A 2 + . . . + a m A m \varphi(A)=a_0E+a_1A+a_2A^2+...+a_mA^m φ(A)=a0E+a1A+a2A2+...+amAm

  • A = P Λ P − 1 A=P\Lambda P^{-1} A=PΛP1,则 A k = P Λ k P A^k=P\Lambda ^k P Ak=PΛkP 则:
    φ ( A ) = P a 0 E P − 1 + P a 1 Λ P − 1 + . . . + P a m Λ m P − 1 = P φ ( A ) P − 1 \begin{aligned} \varphi(A) &= Pa_0EP^{-1}+Pa_1\Lambda P^{-1}+...+Pa_m\Lambda^mP^{-1} \\ &=P\varphi(A)P^{-1} \end{aligned} φ(A)=Pa0EP1+Pa1ΛP1+...+PamΛmP1=Pφ(A)P1

  • Λ = d i a g ( λ 1 , λ 2 , . . . , λ n ) \Lambda=diag(\lambda_1,\lambda_2,...,\lambda_n) Λ=diag(λ1,λ2,...,λn) 是对角矩阵,则 Λ k = d i a g ( λ 1 k , λ 2 k , . . . , λ n k ) \Lambda^k=diag(\lambda_1^k,\lambda_2^k,...,\lambda_n^k) Λk=diag(λ1k,λ2k,...,λnk)

φ ( Λ ) = a 0 E + a 1 Λ + . . . + a m Λ m \varphi(\Lambda) = a_0E+a_1\Lambda+...+a_m\Lambda^m φ(Λ)=a0E+a1Λ+...+amΛm

2.7 克拉默法则

含有n个未知数的n个线性方程的方程组,解可以用n阶行列式表示
{ a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 . . . . . . a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n \begin{cases} a_{11}x_1+a_{12}x_2+...+a_{1n}x_n =b_1 \\ a_{21}x_1+a_{22}x_2+...+a_{2n}x_n =b_2\\ ......\\ a_{n1}x_1+a_{n2}x_2+...+a_{nn}x_n =b_n \end{cases} a11x1+a12x2+...+a1nxn=b1a21x1+a22x2+...+a2nxn=b2......an1x1+an2x2+...+annxn=bn
克拉默法则

上式线性方程组的系数矩阵A的行列式不等于0,即
∣ A ∣ = ∣ a 11 . . . a 1 n . . . . . . a n 1 . . . a n n ∣ ≠ 0 |A|= \left| \begin{matrix} a_{11} & ... & a_{1n}\\ ... & &...\\ a_{n1} & ... & a_{nn} \end{matrix} \right| \neq 0 A=a11...an1......a1n...ann=0
则上式方程有唯一解
x 1 = ∣ A 1 ∣ ∣ A ∣ , x 2 = ∣ A 2 ∣ ∣ A ∣ . . . x n = ∣ A n ∣ ∣ A ∣ \begin{aligned} x_1=\frac{|A_1|}{|A|},&& x_2=\frac{|A_2|}{|A|}&&...&&x_n=\frac{|A_n|}{|A|} \end{aligned} x1=AA1,x2=AA2...xn=AAn
其中 A j ( j = 1 , 2 , . . . , n ) A_j(j=1,2,...,n) Aj(j=1,2,...,n)是将系数矩阵A的第j列元素用右端的常数项代替后所得到的n阶矩阵,即:
A j = ( a 11 . . . a 1 , j − 1 b 1 a 1 , j + 1 . . . a 1 n . . . . . . . . . . . . . . . a n 1 . . . a n , j − 1 b n a n , j + 1 . . . a n n ) A_j= \left( \begin{matrix} a_{11} &...& a_{1,j-1} & b_1 & a_{1,j+1} & ... & a_{1n}\\ ... & & ... & ...& ...& &...\\ a_{n1} & ... & a_{n,j-1} & b_n & a_{n,j+1}&... & a_{nn}\\ \end{matrix} \right) Aj=a11...an1......a1,j1...an,j1b1...bna1,j+1...an,j+1......a1n...ann

2.8 分块矩阵

A = ( A 11 . . . A 1 r . . . . . . A s 1 . . . A s r ) A= \left( \begin{matrix} A_{11} & ... & A_{1r}\\ ... & &...\\ A_{s1} & ... & A_{sr} \end{matrix} \right) A=A11...As1......A1r...Asr

B = ( B 11 . . . B 1 r . . . . . . B s 1 . . . B s r ) \\ B= \left( \begin{matrix} B_{11} & ... & B_{1r}\\ ... & &...\\ B_{s1} & ... & B_{sr} \end{matrix} \right) B=B11...Bs1......B1r...Bsr

矩阵AB行数相同、列数相同,采用相同的分块法

  • A + B = ( A 11 + B 11 . . . A 1 r + B 1 r . . . . . . A s 1 + B s 1 . . . A s r + B s r ) A+B= \left( \begin{matrix} A_{11}+B_{11} & ... & A_{1r}+B_{1r}\\ ... & &...\\ A_{s1}+B_{s1} & ... & A_{sr}+B_{sr} \end{matrix} \right) A+B=A11+B11...As1+Bs1......A1r+B1r...Asr+Bsr

  • λ A = ( λ A 11 . . . λ A 1 r . . . . . . λ A s 1 . . . λ A s r ) \lambda A= \left( \begin{matrix} \lambda A_{11} & ... & \lambda A_{1r}\\ ... & &...\\ \lambda A_{s1} & ... & \lambda A_{sr} \end{matrix} \right) λA=λA11...λAs1......λA1r...λAsr

  • A为 m × l m \times l m×l矩阵,B为 l × n l \times n l×n矩阵,分块成
    A = ( A 11 . . . A 1 t . . . . . . A s 1 . . . A s t ) , B = ( B 11 . . . B 1 r . . . . . . B t 1 . . . B t r ) A= \left( \begin{matrix} A_{11} & ... & A_{1t}\\ ... & &...\\ A_{s1} & ... & A_{st} \end{matrix} \right) , B= \left( \begin{matrix} B_{11} & ... & B_{1r}\\ ... & &...\\ B_{t1} & ... & B_{tr} \end{matrix} \right) A=A11...As1......A1t...Ast,B=B11...Bt1......B1r...Btr
    其中 A i 1 , A i 2 , . . . , A i t A_{i1},A_{i2},...,A_{it} Ai1,Ai2,...,Ait列数分别等于 B 1 j , B 2 j , . . . , B t j B_{1j},B_{2j},...,B_{tj} B1j,B2j,...,Btj行数,则:
    A B = ( C 11 . . . C 1 r . . . . . . C s 1 . . . C s r ) AB= \left( \begin{matrix} C_{11} & ... & C_{1r} \\ ... & & ...\\ C_{s1} & ... & C_{sr} \end{matrix} \right) AB=C11...Cs1......C1r...Csr

  • A = ( A 11 . . . A 1 r . . . . . . A s 1 . . . A s r ) A= \left( \begin{matrix} A_{11} & ... & A_{1r}\\ ... & &...\\ A_{s1} & ... & A_{sr} \end{matrix} \right) A=A11...As1......A1r...Asr

    A T = ( A 11 T . . . A s 1 T . . . . . . A 1 r T . . . A s r T ) A^T= \left( \begin{matrix} A_{11}^T & ... & A_{s1}^T\\ ... & &...\\ A_{1r}^T &... &A_{sr}^T \end{matrix} \right) AT=A11T...A1rT......As1T...AsrT

  • A为n阶方阵,若A的分块矩阵只有在对角线上有非零子块,其余子块都为零矩阵,且在对角线上的子块都是方阵即
    A = ( A 1 0 A 2 . . . 0 A s ) A= \left( \begin{matrix} A_1 && && 0\\ && A_2 &&\\ && ... &&\\ 0 && && A_s \end{matrix} \right) A=A10A2...0As
    其中 A i ( i = 1 , 2 , . . . , s ) A_i(i=1,2,...,s) Ai(i=1,2,...,s)都是方阵,则A为分块对角矩阵,并有
    ∣ A ∣ = ∣ A 1 ∣ ∣ A 2 ∣ . . . ∣ A s ∣ |A|=|A_1||A_2|...|A_s| A=A1A2...As
    ∣ A i ∣ ≠ 0 ( i = 1 , 2 , . . . , s ) |A_i|\neq0 (i=1,2,...,s) Ai=0(i=1,2,...,s),则 ∣ A ∣ ≠ 0 |A|\neq 0 A=0,并有
    A − 1 = ( A 1 − 1 0 A 2 − 1 . . . 0 A s − 1 ) A^{-1} = \left( \begin{matrix} A_1^{-1} && && 0\\ && A_2^{-1} &&\\ && ... &&\\ 0 && && A_s^{-1} \end{matrix} \right) A1=A110A21...0As1

    矩阵A=0的充要条件是方阵 A T A = 0 A^TA=0 ATA=0

分块矩阵求转置,先看普通矩阵求转置,再每个分量求转置

三、矩阵的初等变换

3.1 初等变换

(使用()$\rightarrow $ ())

  • 对换两行
  • 以数 k ≠ 0 k\neq 0 k=0乘某一行中的所有元
  • 把某一行所有元的k倍加到另一行对应的元上

行列式

  • 交换两行,行列式变号
  • 用k乘以行列式某一行等于k乘以行列式
  • 行列式某一行的k倍加到另一行,行列式不变

任一矩阵通过初等变换(行或列变换)化成标准型

3.2 等价

等价:矩阵A通过初等变换得到B,则A等价于B

等价的性质:

  • 反身性:A ~ B
  • 对称性:若A~B ,则B~A
  • 传递性:若A~B, B~C,则A ~ C
3.3 初等方阵

初等方阵:对E做一次初等变换(行或列)得到的矩阵

初等方阵:

  • ∣ E ( i , j ) ∣ = − 1 |E(i,j)|=-1 E(i,j)=1
  • ∣ E ( i ( k ) ) ∣ = k ( k ≠ 0 ) |E(i(k))|=k(k\neq 0) E(i(k))=k(k=0)
  • ∣ E ( i , j ( k ) ) ∣ = 1 |E(i,j(k))|=1 E(i,j(k))=1

初等方阵均可逆

其逆矩阵也是初等方阵

初等方阵的转置矩阵也是初等方阵

  • E − 1 ( i , j ) = E ( i , j ) E^{-1}(i,j)=E(i,j) E1(i,j)=E(i,j)

  • E − 1 ( i ( k ) ) = E ( i ( 1 k ) ) E^{-1}(i(k))=E(i(\frac{1}{k})) E1(i(k))=E(i(k1))

  • E − 1 ( i , j ( l ) ) = E ( i , j ( − l ) ) E^{-1}(i,j(l))=E(i,j(-l)) E1(i,j(l))=E(i,j(l))

初等方阵左乘A相当于对A实施初等方阵同种的行变换

初等方阵右乘A相当于对A实施初等方阵同种的列变换

任意A存在初等方阵 P 1 , P 2 , . . . , P s , Q 1 , Q 2 , . . . , Q t P_1,P_2,...,P_s,Q_1,Q_2,...,Q_t P1,P2,...,PsQ1,Q2,...,Qt使得 P s . . . P 1 A Q 1 . . . Q t P_s...P_1AQ_1...Q_t Ps...P1AQ1...Qt为标准型

A,B等价则存在P,Q使得PAQ=B ( P s . . . P 1 A Q 1 . . . Q t = B P_s...P_1AQ_1...Q_t=B Ps...P1AQ1...Qt=B

A可逆的充要条件:A的标准型为E

A可逆的充要条件:A等于初等方阵的乘积

3.4 初等变换求逆矩阵

A − 1 = Q 1 Q 2 . . . Q t A^{-1}=Q_1Q_2...Q_t A1=Q1Q2...Qt

  • 对A做初等变换,A化为E时,E化成的就是 A − 1 A^{-1} A1 ( A , E ) → ( E , A − 1 ) (A,E) \rightarrow (E,A^{-1}) (A,E)(E,A1)

四、矩阵的秩

k阶子式:任取k行k列

秩:非零子式的最高阶数

4.1 秩的性质
  • 0 ≤ r ( A m × n ) ≤ m i n { m , n } 0 \le r(A_{m\times n})\le min\{m,n\} 0r(Am×n)min{m,n} r ( A ) = m r(A)=m r(A)=m 取所有行,行满秩; r ( A ) = n r(A)=n r(A)=n取所有列,列满秩
    • 满秩: r ( A ) = m i n { m , n } r(A)=min\{m,n\} r(A)=min{m,n}
    • 降秩: r ( A ) < m i n { m , n } r(A)< min\{m,n\} r(A)<min{m,n}
    • A是方阵并且A是满秩,则A可逆(此时 ∣ A ∣ ≠ 0 |A|\neq 0 A=0)
  • r ( A ) = r ( A T ) r(A) =r(A^T) r(A)=r(AT)
  • 矩阵乘以可逆矩阵,秩不变
    • A m × n A_{m \times n} Am×n ,P是m阶可逆方阵,Q是n阶可逆方阵,则 r ( A ) = r ( P A ) = r ( A Q ) = r ( P A Q ) r(A)=r(PA)=r(AQ)=r(PAQ) r(A)=r(PA)=r(AQ)=r(PAQ)
4.2 求矩阵的秩

r ( A ) = r r(A)=r r(A)=r ,有一个r阶子式不为0,所有的r+1阶为0

初等变换不改变矩阵的秩

矩阵的秩等于非零行的行数

求秩的步骤:

  • 使用行变换化为阶梯形
  • 数非零行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值