语音合成论文优选:ESPnet2-TTS: Extending the Edge of TTS Research

声明:语音合成论文优选系列主要分享论文,分享论文不做直接翻译,所写的内容主要是我对论文内容的概括和个人看法。文章同列统计可访问。语音合成http://yqli.tech/page/tts_paper.html。语音识别http://yqli.tech/page/asr_paper.html

如有转载,请标注来源。 欢迎关注微信公众号:低调奋进


ESPnet2-TTS: Extending the Edge of TTS Research

本文为Human Dataware Lab. Co., Ltd,Nagoya University等在2021.10.15更新的文章,主要在ESPNET-TTS基础上提供更灵活更有的TTS的训练工具库ESPNET2-TTS,具体文章链接

https://arxiv.org/pdf/2110.07840.pdf


(最近我主要整理语音识别的资料和网页,分享文章就减少了​。语音合成和语音识别资料查询可参考

https://mp.weixin.qq.com/s/eJcpsfs3OuhrccJ7_BvKOg)

简介

本文主要介绍新的工具ESPNET2-TTS,因此我主要总结该版本的主要优点,具体细节不做翻译​介绍:
1)提供了一些列便捷的音频处理工具和​完备的模型训练脚本;

2)提供大量预训练模型​:单人,多人等等​;

3)提供SOTA的TTS方案,主要包括

      a) T2M模型,即声学模型。自回归模型(AR)有Tacotron2,Transformer-TTS,非自回归模型(NAR)有Fastspeech, Fastspeech2​。其中也提供Conformer版本的​模型。

       b) M2W模型,即声码器​。主要有Griffin-Lim,Paralle WaveGan, MelGan, StyleMelGan,Hifi-Gan。

        c) Joint-T2W models。主要提供以上T2M和M2W进行联合训练​。

       d) E2E-T2W models。真正端到端T2W,文本直接合成​音频。主要有VITS​。

试验

 Table 1主要对比以下几个系统,结果显示本版本的联合训练加微调效果最好​。图1展示纯端到端VITS受到G2P的影响结果,其影响试验如table2​展示。

接下来进行多人模型试验,主要对比一下几个系统,结果如table3和table4所示的seen speaker和unseen speaker​。table5和table6主要在日语中进行试验,其中VITS效果较好,这个结果让人眼前一亮​啊。

### DRL-TransKey Paper Overview The **DRL-TransKey** paper focuses on the application of deep reinforcement learning (DRL) techniques to achieve policy gradient-based motion representation transfer, specifically transitioning from keyframe animations to more dynamic and adaptive motions[^1]. This approach leverages advanced machine learning models that allow for a seamless integration between traditional hand-crafted animations and AI-driven procedural generation. In this context, the method utilizes policy gradients as an optimization technique within the framework of reinforcement learning. The primary goal is to learn policies that can generalize across different scenarios while preserving the artistic intent embedded in original keyframes[^2]. #### Key Concepts Discussed in the Paper One significant aspect highlighted involves representing complex movements through latent space embeddings derived via autoencoders or variational methods before applying them into RL environments where agents interactively refine their behaviors over time steps under reward signals defined by task objectives such as smoothness, realism preservation etc.[^3] Additionally, it introduces mechanisms like curriculum learning which gradually increases difficulty levels during training phases ensuring stable convergence towards optimal solutions without falling prey common pitfalls associated naive implementations involving high dimensional continuous action spaces typical character control problems found video games industry applications among others areas requiring sophisticated motor skills simulation tasks performed virtual characters controlled autonomously using learned strategies rather than scripted sequences alone thus enhancing overall flexibility adaptability real world conditions encountered various domains including robotics autonomous vehicles beyond mere entertainment purposes only but also extending scientific research experimental setups needing precise manipulations objects environments alike depending upon specific requirements set forth each individual case study considered throughout entire document length covering multiple aspects ranging theoretical foundations practical implementation details alongside empirical evaluations demonstrating effectiveness proposed methodologies against baseline comparisons established literature review sections provided earlier parts text body itself too! ```python import gym from stable_baselines3 import PPO env = gym.make('CustomMotionEnv-v0') # Hypothetical environment setup model = PPO("MlpPolicy", env, verbose=1) def train_model(): model.learn(total_timesteps=100_000) train_model() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我叫永强

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值