陶哲轩实分析 3.2 节 习题试解

陶哲轩实分析 3.2 节 习题试解

习题3.2.2 原来的解答有问题,有更新。

习题 3.2

这一小节只有三道习题。不过却花了我很长的时间。主要是被这本书关于正则公理的中文翻译给坑了。
书中正则公理是这么表达的:如果 A A A 是一个非空的集合,那么 A A A至少有一个元素 x x x,要么 x x x不是集合,要么 x x x 是与 A A A不同的集合。
" x x x 是与 A A A不同的集合" 我理解为 x ≠ A x \neq A x̸=A,实际上正则公理说的是 x ⋂ A = ∅ x \bigcap A = \emptyset xA=

3.2.1

(1) 证明万有分类公理蕴含公理 3.2

构造一个性质 P ( x ) P(x) P(x) 这个性质恒为假。那么 { x : P ( x ) } \{x: P(x)\} {x:P(x)} 就是 空集 ∅ \emptyset

(2) 证明万有分类公理蕴含公理 3.3

构造一个性质

P ( x ) = { t r u e x = a f a l s e o t h e r P(x) = \begin{cases} true & x = a\\ false & other \end{cases} P(x)={truefalsex=aother

那么 { x : P ( x ) } \{x:P(x)\} {x:P(x)} 就是单点集 { a } \{a\} {a}

构造一个性质

P ( x ) = { t r u e x = a   o r   x = b f a l s e o t h e r P(x) = \begin{cases} true & x = a \ or \ x =b\\ false & other \end{cases} P(x)={truefalsex=a or x=bother

那么 { x : P ( x ) } \{x:P(x)\} {x:P(x)} 就是双元素集 { a , b } \{a, b\} {a,b}

(3) 证明万有分类公理蕴含公理 3.4

构造一个性质

P ( x ) = { t r u e x ∈ A   o r   x ∈ B f a l s e o t h e r P(x) = \begin{cases} true & x \in A\ or\ x \in B\\ false & other \end{cases} P(x)={truefalsexA or xBother

那么 { x : P ( x ) } \{x: P(x)\} {x:P(x)} 就是集合 A ⋃ B A \bigcup B AB

(4) 证明万有分类公理蕴含公理 3.5

构造一个性质

Q ( x ) = { t r u e x ∈ A   a n d   P ( x ) = t r u e f a l s e o t h e r Q(x) = \begin{cases} true & x \in A\ and\ P(x) = true\\ false & other \end{cases} Q(x)={truefalsexA and P(x)=trueother

那么 { x : Q ( x ) } \{x: Q(x)\} {x:Q(x)} 就是集合 { x ∈ A : P ( x ) 为 真 } \{x \in A: P(x) 为真\} {xA:P(x)}

(5) 证明万有分类公理蕴含公理 3.6

构造一个性质

Q ( y ) = { t r u e ∃ x ∈ A   使 得   P ( x , y ) = t r u e f a l s e o t h e r Q(y) = \begin{cases} true & \exists x \in A\ 使得\ P(x,y) = true\\ false & other \end{cases} Q(y)={truefalsexA 使 P(x,y)=trueother

那么 { x : Q ( x ) } \{x: Q(x)\} {x:Q(x)} 就是集合 { y : P ( x , y ) 对 于 某 个 x ∈ A 成 立 } \{y:P(x, y) 对于某个 x \in A 成立\} {y:P(x,y)xA}

3.2.2

(1) 证明 A ∉ A A \notin A A/A

反证法:假如存在一个集合 A 使得 A ∈ A A \in A AA 成立。
那么由于 A ∈ A A \in A AA A ∈ { A } A \in \{A\} A{A}
所以 A ⊆ A ⋂ { A } A \subseteq A \bigcap\{A\} AA{A}
而正则公理要求 A ⋂ { A } = ∅ A \bigcap\{A\}=\emptyset A{A}=, 空集不存在子集。
出现矛盾,所以不存在这样的集合 A A A

(2) 如果 A A A B B B 是集合,那么要么 A ∉ B A \notin B A/B 要么 B ∉ A B \notin A B/A,或者二者同时成立。

反证法:
假设 A ∈ B A\in B AB B ∈ A B \in A BA 同时成立。
由于 A ∈ { A , B } A \in \{A,B\} A{A,B} A ∈ B A \in B AB 所以
A ⊆ { A , B } ⋂ B A \subseteq \{A,B\} \bigcap B A{A,B}B
同理:
B ⊆ { A , B } ⋂ A B \subseteq \{A,B\} \bigcap A B{A,B}A

与正则公理矛盾,正则公理要求至少有一个 x x x 满足 { A , B } ⋂ x = ∅ \{A,B\} \bigcap x= \emptyset {A,B}x=

3.2.3

(1)构造性质 P ( x ) P(x) P(x) 使得对于任何 x x x, P ( x ) P(x) P(x) 始终为真。那么 { P ( x ) } \{P(x)\} {P(x)}就是万有集合 Ω \Omega Ω

(2)如果存在万有集合 Ω \Omega Ω, 那么任何公理3.8生成的集合 { P ( x ) } \{P(x)\} {P(x)} 都可以由分类公理构造 { x ∈ Ω : P ( x ) } \{x\in \Omega:P(x)\} {xΩ:P(x)}

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值