陶哲轩实分析 5.6 节习题试解

陶哲轩实分析 5.6 节习题试解

5.6.1 证明引理 5.6.6

x,y>0 是正的实数,并设 m,n1 是正的整数。
(a)如果 y=x1/n ,那么 yn=x
证明:
首先, {zR:z0,znx} 是非空集合,必然存在上确界,设这个上确界为 y 。由定义有:

y=x1/n=sup{zR:z0,znx}

用反证法证明 yn=x
假设 yn<x 。设 (y)n=x ,那么 y<y 并且 y{zR:z0,znx}
这与 y=sup{zR:z0,znx} 矛盾。

假设 yn>x 。设 (y)n=x ,那么 y<y ,所以存在 y′′ 满足 y<y′′<y ,并且 (y′′)n>x
这与 y=sup{zR:z0,znx} 矛盾。

所以 yn=x

(b)如果 yn=x 那么 y=x1/n
证明:
对任意的 y>y 都有 (y)n>x 。因此,如果 z 满足 z0 znx ,那么必然有 zy 。所以 y {zR:z0,znx} 的上界。
又知 y{zR:z0,znx} ,所以 y=sup{zR:z0,znx}
所以: y=x1/n

(c) x1/n 是正的实数。

x1/n=sup{zR:z0,znx}

定义 E:={zR:z0,znx}
因为 0E ,所以 E 是非空集合。下面证明 E 是有界集合。
如果 x1 , 那么 E 有上界 1
如果 x>1 ,那么 E 有上界 x
所以 E 是有界集合,x1/n 是一个实数。
z=min(x,1) ,那么有 0<(z)nx ,所以 zE
所以 x1/nz ,所以 x1/n 是正的实数。

(d) x>y 当且仅当 x1/n>y1/n
p=x1/n q=y1/n ,那么有 x=pn y=qn
先证明 (x1/n>y1/n)(x>y)
如果 p>q 那么有 pn>qn ,也就是 (x1/n>y1/n)(x>y)
再证明 (x>y)(x1/n>y1/n)
反证法:
假设 x1/ny1/n 也就是 pq ,那么有 pnqn ,也就是 xy x>y 的假设矛盾。所以 (x>y)(x1/n>y1/n)

(e)如果 x>1 那么 x1/k k 的减函数。如果 x<1 那么 x1/k k 的增函数。如果 x=1 那么 x1/k=1
先证明 如果 x>1 那么 x1/k k 的减函数。
易证 x>1 x1/k>1
m=n+1 ,定义 xn:=x1/n xm:=x1/m
那么有 (xn)n=x,(xm)m=x
(xn)n=(xm)(xm)n>(xm)n 所以 xn>xm ,所以 x1/k 是减函数。

证明 如果 x<1 那么 x1/k k 的增函数。
易证 x<1 x1/k<1
m=n+1 ,定义 xn:=x1/n xm:=x1/m
那么有 (xn)n=x,(xm)m=x
(xn)n=(xm)(xm)n<(xm)n 所以 xn<xm ,所以 x1/k 是增函数。

证明 x=1 那么 x1/k=1

11/k=sup{zR:z0,zk1}=1

(f) (xy)1/n=x1/ny1/n
设:

z1:=x1/n=sup{zR:z0,znx}z2:=y1/n=sup{zR:z0,zny}z3:=(xy)1/n=sup{zR:z0,znxy}

那么有:
(z1z2)n=(z1)n(z2)n=xy=(z3)n

所以 z1z2=z3 ,也就是 (xy)1/n=x1/ny1/n

(g) (x1/n)1/m=x1/mn

((x1n)1m)mn=(x1n)n=x(x1/mn)mn=x

所以: (x1/n)1/m=x1/mn

5.6.2 证明引理 5.6.9

x,y>0 是正的实数,并设 q,r 是比例数。
(a) xq 是正的实数。
q=a/b a,b 是两个整数,且 b>0
那么 xq=xa/b=(xa)1/b
因为 x>0
所以 xa>0
所以 (xa)1/b>0
所以 xq 是正的实数。
(b) xq+r=xqxr ,并且 (xq)r=xqr
q=a/b a,b 是两个整数,且 b>0
r=c/d c,d 是两个整数,且 d>0

xq+r=====xab+cdxad+bcbd(x1bd)ad+bc(x1bd)ad(x1bd)bcxabxcd

(xq)r========(xab)cd((((x1b)a)1d)c(((x1b)a)c)1d((x1b)ac)1d((x1b)1d)ac(x1bd)acxacbdxqr

(c) xq=1xq
xq====xab(x1b)a1(x1b)a1xq

(d)如果 q>0 ,那么 x>y 当且仅当 xq>yq
如果 x>y ,那么

x1b>y1b

所以
(x1b)a>(x1b)a

所以 xq>yq

如果 xq>yq ,那么

(xq)b>(yq)bxa>ya

所以 x>y
(e)如果 x>1 那么 xq>xr 当且仅当 q>r x<1 那么 xq>xr 当且仅当 q<r

先证明 xq>xr 当且仅当 q>r
q,r 总可以写为 q=a/c,r=b/c 的形式。
q>r 时,也就是 a>b
所以

xq=(x1/c)a>(x1/c)b=xr

xq>xr 时,也就是

(x1/c)a>(x1/c)b

a>b 所以 q>r

证明 xq<xr 当且仅当 q<r
q,r 总可以写为 q=a/c,r=b/c 的形式。
q<r 时,也就是 a<b
所以

xq=(x1/c)a<(x1/c)b=xr

xq<xr 时,也就是

(x1/c)a<(x1/c)b

a<b 所以 q<r

5.6.3 如果 x 是实数,证明 |x|=(x2)1/2

分情况讨论:
(1) x=0 x2=0 |x|=0

x2=0=sup{yR:y0,y20}

显然 {yR:y0,y20}={0} 是单元素集, sup{yR:y0,y20}=0
所以这时 |x|=(x2)1/2

(2) x>0 时。 |x|=x

(x2)1/2=sup{yR:y0,y2x2}=sup{yR:0yx}=x=|x|

(3) x<0 时。 |x|=x>0

(x2)1/2=(|x|2)1/2=|x|

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值