陶哲轩实分析(上)9.5及习题-Analysis I 9.5

左极限和右极限,相对简单的一节。

Exercise 9.5.1

Define lim ⁡ x → x 0 ; x ∈ E f ( x ) = + ∞ \lim_{x→x_0;x∈E}f(x)=+∞ limxx0;xEf(x)=+ iff ∀ M > 0 , ∃ δ > 0 ∀M>0,∃δ>0 M>0,δ>0, s.t. x ∈ E , ∣ x − x 0 ∣ < δ x∈E,|x-x_0 |<δ xE,xx0<δ would lead to f ( x ) > M f(x)>M f(x)>M. lim ⁡ x → x 0 ; x ∈ E f ( x ) = − ∞ \lim_{x→x_0;x∈E}f(x)=-∞ limxx0;xEf(x)= iff ∀ M > 0 , ∃ δ > 0 ∀M>0,∃δ>0 M>0,δ>0, s.t. x ∈ E , ∣ x − x 0 ∣ < δ x∈E,|x-x_0 |<δ xE,xx0<δ would lead to f ( x ) < − M f(x)<-M f(x)<M.
For f ( x ) = 1 / x f(x)=1/x f(x)=1/x, we consider f ( 0 + ) f(0+) f(0+) and f ( 0 − ) f(0-) f(0):
For ∀ M > 0 , ∃ δ = 1 / ( M + 1 ) > 0 ∀M>0,∃δ=1/(M+1)>0 M>0,δ=1/(M+1)>0, s.t. x ∈ E ∩ ( 0 , + ∞ ) , ∣ x − 0 ∣ < δ x∈E∩(0,+∞),|x-0|<δ xE(0,+),x0<δ, we have
f ( x ) = 1 / x > 1 / δ = M + 1 > M f(x)=1/x>1/δ=M+1>M f(x)=1/x>1/δ=M+1>M
Thus f ( 0 + ) = + ∞ f(0+)=+∞ f(0+)=+.
For f ( 0 − ) f(0-) f(0), let ∀ M > 0 , ∃ δ = − 1 / ( M + 1 ) < 0 ∀M>0,∃δ=-1/(M+1)<0 M>0,δ=1/(M+1)<0, s.t. x ∈ E ∩ ( − ∞ , 0 ) , ∣ x − 0 ∣ < δ x∈E∩(-∞,0),|x-0|<δ xE(,0),x0<δ, we have
f ( x ) = 1 / x < 1 / δ = − M − 1 < − M f(x)=1/x<1/δ=-M-1<-M f(x)=1/x<1/δ=M1<M
Thus f ( 0 − ) = − ∞ f(0-)=-∞ f(0)=.

An analogue of Proposition 9.3.9: the following two are equivalent:
(a) lim ⁡ x → x 0 ; x ∈ E ) f ( x ) = + ∞ \lim_{x→x_0;x∈E)}f(x)=+∞ limxx0;xE)f(x)=+(or − ∞ -∞ )
(b) ∀ ( a n ) n = 0 ∞ ∈ E , lim ⁡ n → ∞ a n = x 0 ∀(a_n )_{n=0}^∞∈E, \lim_{n→∞}a_n=x_0 (an)n=0E,limnan=x0, we have lim ⁡ n → ∞ ⁡ f ( a n ) = + ∞ \lim_{n→∞}⁡f(a_n )=+∞ limnf(an)=+(or − ∞ -∞ )
Proof :
(a) implies (b):
∀ M > 0 ∀M>0 M>0, since (a) is true, ∃ δ > 0 ∃δ>0 δ>0, s.t. x ∈ E , ∣ x − x 0 ∣ < δ x∈E,|x-x_0 |<δ xE,xx0<δ would lead to f ( x ) > M f(x)>M f(x)>M. We have lim ⁡ n → ∞ a n = x 0 \lim_{n→∞}a_n=x_0 limnan=x0, so ∃ N ∈ N ∃N∈\mathbf N NN, s.t.
∣ a n − x 0 ∣ < δ , ∀ n > N |a_n-x_0 |<δ,\quad∀n>N anx0<δ,n>N
Then we have f ( a n ) > M , ∀ n > N f(a_n )>M,∀n>N f(an)>M,n>N, this means lim ⁡ n → ∞ ⁡ f ( a n ) = + ∞ \lim_{n→∞}⁡f(a_n )=+∞ limnf(an)=+.
(b) implies (a):
Let (b) be true, assume lim ⁡ x → x 0 ; x ∈ E ) f ( x ) ≠ + ∞ \lim_{x→x_0;x∈E)}f(x)≠+∞ limxx0;xE)f(x)=+, then we can find a M 0 M_0 M0, s.t. for any δ > 0 δ>0 δ>0, the set { x ∈ ( x 0 − δ , x 0 + δ ) ∶ f ( x ) ≤ M 0 } \{x∈(x_0-δ,x_0+δ) ∶f(x)≤M_0\} {x(x0δ,x0+δ)f(x)M0} is non-empty. We use axiom of choice to select
a n ∈ { x ∈ ( x 0 − 1 / n , x 0 + 1 / n ) ∶ f ( x ) ≤ M 0 } a_n∈\{x∈(x_0-1/n,x_0+1/n) ∶f(x)≤M_0\} an{x(x01/n,x0+1/n)f(x)M0}
Then lim ⁡ n → ∞ a n = x 0 \lim_{n→∞}a_n=x_0 limnan=x0, but lim ⁡ n → ∞ ⁡ f ( a n ) ≤ M 0 < + ∞ \lim_{n→∞}⁡f(a_n )≤M_0<+∞ limnf(an)M0<+, this contradicts (b).
The case of − ∞ -∞ can be similarly proved.

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值