陶哲轩实分析 7.1 节习题试解

陶哲轩实分析 7.1 节习题试解

证明引理 7.1.4

(a) 设 mn<p 是整数,并设 ai 是实数,对应于每个整数 mip 。 那么我们有

i=mnai+i=n+1pai=i=mpai

数学归纳法:
p=n+1

i=mnai+i=n+1pai=i=mnai+an+1=i=mn+1ai

假设当 p=q,q>n+1 时成立:

i=mnai+i=n+1qai=i=mqai

那么当 p=q+1 时有:

i=mnai+i=n+1q+1ai===i=mnai+i=n+1qai+aq+1i=mqai+aq+1i=mq+1ai

(b)设 mn 是整数, k 是另一个整数,并设 ai 是对应于每个整数 min 的实数,那么我们有

i=mnai=j=m+kn+kajk

n 用数学归纳法:

n=m

i=mmai=am=j=m+km+kajk

假设当 n=p 时成立。

i=mpai=j=m+kp+kajk

那么当 n=p+1 时有:
i=mp+1ai====i=mpai+ap+1j=m+kp+kajk+ap+1j=m+kp+kajk+j=p+1+kp+1+kajkj=m+kp=1+kajk

(c)设 mn 是整数,并设 ai,bi 是对应于每个整数 min 的实数,那么我们有

i=mn(ai+bi)=i=mnai+i=mnbi

n 用数学归纳法:
n=m

i=mm(ai+bi)=am+bm=i=mmai+i=mmbi

假设对于 n=p 成立:

i=mp(ai+bi)=i=mpai+i=mpbi

那么当 n=p+1 时,有:

i=mp+1(ai+bi)===i=mp(ai+bi)+(ap+1+bp+1)i=mpai+i=mpbi+(ap+1+bp+1)i=mp+1ai+i=mp+1bi

(d)设 mn 是整数,并设 ai 是对应于每个整数 min 的实数,设 c 是实数,那么我们有

i=mn(cai)=c(i=mnai)

n 用数学归纳法:

n=m

i=mm(cai)=cam=c(i=mmai)

假设对于 n=p 成立。

i=mp(cai)=c(i=mpai)

那么当 n=p+1 时,有:
i=mp+1(cai)===i=mp(cai)+cap+1c(i=mpai+ap+1)ci=mp+1ai

(e)(关于有限级数的三角不等式)设 mn 是整数,并设 ai 是对应于每个整数 min 的实数,那么我们有:

i=mnaii=mn|ai|

n 用数学归纳法:

n=m

i=mmai=|am|i=mm|ai|

假设对于 n=p 成立。

i=mpaii=mp|ai|

那么当 n=p+1 时,有:

i=mp+1ai=i=mpai+ap+1i=mpai+|ap+1|i=mp|ai|+|ap+1|=i=mp+1|ai|

(f)(有限级数的比较法则)设 mn 是整数, ai 是对应于每个整数 min 的实数,并设对于一切 min , aibi ,那么我们有:

i=mnaii=mnbi

n 用数学归纳法:

n=m

i=mmai=ambm=i=mmbi

假设对于 n=p 成立。

i=mpaii=mpbi

那么当 n=p+1 时,有:

i=mp+1ai=i=mpai+ap+1i=mpbi+ap+1i=mpbi+bp+1i=mp+1bi

7.1.2 证明引理 7.1.11

(a)如果 X 是空集,并且f:R 是函数(即 f 是空函数),那么我们有:

xXf(x)=0

证明:
构造一个一一映射: h: ,那么有

xXf(x)=i=01f(h(0))=0

(b)如果 X 是由一个单个元素组成:x=x0,并且 f:XR 是函数,那么我们有:

xXf(x)=f(x0)

证明:
构造一个一一映射 h:{0}X 满足 h(0) = x_0 h(0)=x0
那么:

xXf(x)=i=00f(h(i))=f(x0)

(c)(代入法 I) 如果 X 是有限集合,f:XR 是函数,并且 g:YX 是双射,那么

xXf(x)=yYf(g(y))

X 有 N 个元素,构造一个双射 h:{1,2,,N}X 那么:

xXf(x)=i=1Nf(h(i))

另外 p=g1.h:{1,2,,N}Y 也是双射。

yYf(g(y))=i=1Nf(g(p(i)))=i=1Nf(h(i))

所以:

xXf(x)=yYf(g(y))

(d)(代入法 II)设 nm 是整数,并设 X 是集合

X:{iZ:nim}

如果 ai 是实数,对应于每个整数 iX ,那么

i=nmai=iXai

构造一个双射 h(i)=i
那么

iXai=i=nmah(i)=i=nmai

(e)设 X,Y 是不相交的有限集合,并且 f:XYR 是函数,那么

xXYf(z)=(xXf(x))+yYf(x)

X Nx 个元素,构造一个双射 hx:{1,2,Nx}X ,设 Y Ny 个元素,构造一个双射 hy:{Nx+1,2,Nx+Ny}Y 。那么 h:{1,2,Nx+Ny}XY 满足:
$$

h(i) = \left{

hx(i)hy(i)x{1,2,Nx}x{Nx+1,2,Nx+Ny}

\right.
$$

也是双射。

那么:

xXYf(z)===i=1Nx+Nyf(h(i))i=1Nxf(hx(i))+i=Nx+1Nx+Nyf(hy(i))(xXf(x))+yYf(x)

(f)(线性性质I)设 X 是有限集合,设 f:XR g:XR 都是函数,那么

xX(f(x)+g(x))=xXf(x)+xXg(x)

X N 个元素,构造一个双射 h:{1,2,N}X
那么:

xX(f(x)+g(x))===i=1N(f(x)+g(x))i=1Nf(x)+i=1Ng(x)xXf(x)+xXg(x)

(g)(线性性质II)设 X 是有限集合,设 f:XR 是函数,并设 c 是实数,那么

xXcf(x)=cxXf(x)

X N 个元素,构造一个双射 h:{1,2,N}X
那么:

xXcf(x)===i=1Ncf(h(i))ci=1Nf(h(i))cxXf(x)

(h) (单调性)设 X 是有限集合,并设 f:XR g:XR 都是函数,他们对于一切的 xX 满足 f(x)g(x) 。那么

xXf(x)xXg(x)

证明:
X N 个元素,构造一个双射 h:{1,2,N}X
那么:

xXf(x)=i=1Nf(h(i))i=1Ng(h(i))=xXg(x)

(i)(三角不等式)设 X 是有限集合,并设 f:XR 是函数,那么

xXf(x)xX|f(x)|

X N 个元素,构造一个双射 h:{1,2,N}X
那么:

xXf(x)=i=1Nf(h(i))i=1N|f(h(i))|=xX|f(x)|

7.1.3 构做有限乘积 ni=1ai xXf(x) 的定义。

$$
\prod_{i=m}^{n} a_i := 1 , \ 如果 n < m \

\prod_{i=m}^{n} a_i :=\left( \prod_{i=m}^{n-1} a_i \right) \times a_n \

\prod_{x \in X} f(x) = \prod_{i=1}^{n} f(h(i))
$$

7.1.4 证明二项公式

(x+y)n=j=0nn!j!(nj)!xjynj

对一切自然数成立。

数学归纳法:
n=0

(x+y)0=1=j=000!0! 0!x0y0

假设对于 n=m 时成立

(x+y)m=j=0mm!j!(mj)!xjymj

那么当 n=m+1

(x+y)m+1========(x+y)m(x+y)(x+y)j=0mm!j!(mj)!xjymjj=0mm!j!(mj)!xj+1ymj+j=0mm!j!(mj)!xjym+1jj=1m+1m!(j1)!(m+1j)!xjym+1j+j=0mm!j!(mj)!xjym+1jxm+1+j=1mm!(j1)!(m+1j)!xj+1ymj+j=1mm!j!(mj)!xjym+1j+ym+1xm+1+j=1m(j×m!j!(m+1j)!+(m+1j)×m!j!(m+1j)!)xjym+1j+ym+1xm+1+j=1m(m+1)!j!(m+1j)!xjym+1j+ym+1j=0m+1(m+1)!j!(m+1j)!xjym+1j

7.1.5 设 X 是有限集合,设 m 是整数,并且对于每个 xX an(x)n=m 是一个收敛的实数序列。证明序列 (xXan(x))n=m 是收敛的。并且

limnxXan(x)=xXlimnan(x)

X 的元素个数为 N

N=1

(xXan(x))n=m=(an(x))n=m

是收敛的实数序列。

假设当 N=M

(xXan(x))n=m=(bn)n=m

也是收敛的实数序列。

那么当 N=M+1

(xXan(x))n=m=(bn+an(xM+1))n=m

也是收敛的实数序列。

N=1

limnxXan(x)=xXlimnan(x)

成立。

假设当 N=M

limnxXan(x)=xXlimnan(x)

成立。
那么当 N=M+1
limnxXan(x)==xX/x0limnan(x)+limnan(x0)xXlimnan(x)

成立。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值