陶哲轩实分析 3.5 节习题试解

3.5.1

第一种定义:
( x , y ) : = { { x } , { x , y } } (x,y) := \{\{x\},\{x,y\}\} (x,y):={{x},{x,y}}
( x ′ , y ′ ) : = { { x ′ } , { x ′ , y ′ } } (x',y'):=\{\{x'\}, \{x',y'\}\} (x,y):={{x},{x,y}}

x = x ′ , y = y ′ x= x', y = y' x=x,y=y 时,很容易证明 { { x } , { x , y } } = { { x ′ } , { x ′ , y ′ } } \{\{x\},\{x,y\}\} = \{\{x'\}, \{x',y'\}\} {{x},{x,y}}={{x},{x,y}}
因此我们只要证明当 { { x } , { x , y } } = { { x ′ } , { x ′ , y ′ } } \{\{x\},\{x,y\}\} = \{\{x'\}, \{x',y'\}\} {{x},{x,y}}={{x},{x,y}} 成立时,能推出 x = x ′ , y = y ′ x= x', y = y' x=x,y=y
{ { x } , { x , y } } \{\{x\},\{x,y\}\} {{x},{x,y}} { { x ′ } , { x ′ , y ′ } } \{\{x'\}, \{x',y'\}\} {{x},{x,y}} 都是双元素集(或者都是单元素集)。 两个双元素集相等可以分两种情况。
{ x } = { x ′ } \{x\} = \{x'\} {x}={x} 或者 { x } = { x ′ , y ′ } \{x\} =\{x',y'\} {x}={x,y} 下面分别来讨论。

  1. { x } = { x ′ } \{x\} = \{x'\} {x}={x} 这时有 x = x ′ x=x' x=x { x , y } = { x ′ , y ′ } \{x,y\}=\{x',y'\} {x,y}={x,y} ,那么可知 y = y ′ y=y' y=y
  2. { x } = { x ′ , y ′ } \{x\} =\{x',y'\} {x}={x,y} 这时说明 { x ′ , y ′ } \{x',y'\} {x,y} 也是单元素集。所以 x ′ = y ′ = x x' = y'=x x=y=x,同理, { x , y } \{x,y\} {x,y} 也是单元素集, y = x y = x y=x
    这两种情况下都有 x = x ′ , y = y ′ x = x', y = y' x=x,y=y

第二种定义:
KaTeX parse error: No such environment: equation at position 8: \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲}̲ \begin{split} …
证明这个定义也是有效的,还是需要从正反两方面来证明。
x = x ′ , y = y ′ x= x', y = y' x=x,y=y 时,很容易证明 { x , { x , y } } = { x ′ , { x ′ , y ′ } } \{x,\{x,y\}\} = \{x', \{x',y'\}\} {x,{x,y}}={x,{x,y}}
难点还是在反方向的证明:假设 { x , { x , y } } = { x ′ , { x ′ , y ′ } } \{x,\{x,y\}\} = \{x', \{x',y'\}\} {x,{x,y}}={x,{x,y}},如何证明 x = x ′ , y = y ′ x= x', y = y' x=x,y=y
由于等号两边都是双元素集(不能是单元素集,否则违反正则性),所以还是分两种情况:
情形一:设 x = x ′ x=x' x=x 这时有 { x , y } = { x ′ , y ′ } \{x,y\}=\{x',y'\} {x,y}={x,y} 必然能推出 y = y ′ y=y' y=y
情形二:设 x = { x ′ , y ′ } x = \{x',y'\} x={x,y} 这时 { x , y } ≠ { x ′ , y ′ } \{x,y\} \neq\{x',y'\} {x,y}={x,y} (否则违反正则性)。
那么 x = { x ′ , y ′ } , { x , y } = x ′ x = \{x',y'\},\{x,y\}=x' x={x,y},{x,y}=x 。因此 x ′ ∈ x , x ∈ x ′ x' \in x, x \in x' xx,xx
我们可以构造一个集合 { x , x ′ } \{x, x'\} {x,x} ,对于这个集合有:
KaTeX parse error: No such environment: equation at position 8: \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲}̲ \begin{split} …
这说明:
KaTeX parse error: No such environment: equation at position 8: \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲}̲ \begin{split} …
而正则性公理要求 { x , x ′ } ⋂ x \{x,x'\} \bigcap x {x,x}x { x , x ′ } ⋂ x ′ \{x,x'\} \bigcap x' {x,x}x 至少有一个是空集。所以情形二是不成立的。那么就只剩下情形一,这时有$ x=x’, y= y’$ 所以第二种定义是有效的。

3.5. 2 假设我们把有序n元组定义为一个满射函数 x : { i ∈ N , 1 ≤ i ≤ n } → X x:\{i \in N, 1 \leq i \leq n\} \rightarrow X x:{iN,1in}X,其值域是某个任意的集合X,那么我们把x(i) 写成 x i x_i xi,并把 x x x 写成 ( x i ) 1 ≤ i ≤ n (x_i)_{1 \leq i \leq n} (xi)1in , 用这个来验证 ( x i ) 1 ≤ i ≤ n = ( y i ) 1 ≤ i ≤ n (x_i)_{1 \leq i \leq n} = (y_i)_{1 \leq i \leq n} (xi)1in=(yi)1in 当且仅当对于一切的 1 ≤ i ≤ n 1 \leq i \leq n 1in x i = y i x_i = y_i xi=yi。同时证明:如果 ( X i ) 1 ≤ i ≤ n (X_i)_{1 \leq i \leq n} (Xi)1in 是集合的一个有序n元组,那么在定义3.5.7 中定义的笛卡尔乘积的确是一个集合。

这个问题分成两问,第一问是:验证 ( x i ) 1 ≤ i ≤ n = ( y i ) 1 ≤ i ≤ n (x_i)_{1 \leq i \leq n} = (y_i)_{1 \leq i \leq n} (xi)1in=(yi)1in 当且仅当对于一切的 1 ≤ i ≤ n 1 \leq i \leq n 1in x i = y i x_i = y_i xi=yi。题目中把有序n元组定义为一个满射函数。根据定义 3.3.7,这一问就是两个函数相等的定义。所以是成立的。

第二问:如果 ( X i ) 1 ≤ i ≤ n (X_i)_{1 \leq i \leq n} (Xi)1in 是集合的一个有序n元组,那么在定义3.5.7 中定义的笛卡尔乘积的确是一个集合

构造一个满射函数 f : { i ∈ N , 1 ≤ i ≤ n } → ∪ X i f:\{i \in N, 1 \leq i \leq n\} \rightarrow \cup X_i f:{iN,1in}Xi ,那么所有不同的 f,构成一个集合 F
那么根据选择定理, { f ∈ F : f ( i ) ∈ X i } \{ f \in F : f(i) \in X_i\} {fF:f(i)Xi} 也是一个集合,这个集合就是问题中的笛卡尔乘积

3.5.3 证明对于序偶及有序 n 元组,相等的定义遵从反身性、对称性、传递性

证明: 首先有序n元组的定义包括了序偶,因此我们下面只针对有序n元组进行证明。不再对序偶单独证明。
一个有序n元组 ( x 1 , x 2 , … , x n ) = ( y 1 , y 2 , … , y n ) (x_1, x_2, \dots , x_n) = (y_1, y_2, \dots, y_n) (x1,x2,,xn)=(y1,y2,,yn) 根据定义,等价于 ∀ i ∈ [ 1 , n ] , x i = y i \forall i \in [1, n], x_i = y_i i[1,n],xi=yi
那么 ∀ i ∈ [ 1 , n ] , x i = x i \forall i \in [1, n], x_i = x_i i[1,n],xi=xi 所有 ( x 1 , x 2 , … , x n ) = ( x 1 , x 2 , … , x n ) (x_1,x_2,\dots,x_n) = (x_1,x_2,\dots,x_n) (x1,x2,,xn)=(x1,x2,,xn) ,所以遵从反身性

∀ i ∈ [ 1 , n ] , x i = y i \forall i \in [1, n], x_i = y_i i[1,n],xi=yi ,那么 ∀ i ∈ [ 1 , n ] , y i = x i \forall i \in [1, n], y_i = x_i i[1,n],yi=xi 所以 ( y 1 , y 2 , … , y n ) = ( x 1 , x 2 , … , x n ) (y_1, y_2, \dots, y_n) = (x_1,x_2,\dots, x_n) (y1,y2,,yn)=(x1,x2,,xn),所以满足对称性

∀ i ∈ [ 1 , n ] , x i = y i \forall i \in [1, n], x_i = y_i i[1,n],xi=yi 同时, ∀ i ∈ [ 1 , n ] , y i = z i \forall i \in [1, n], y_i = z_i i[1,n],yi=zi 那么 ∀ i ∈ [ 1 , n ] , x i = z i \forall i \in [1, n], x_i = z_i i[1,n],xi=zi,所以 ( x 1 , x 2 , … , x n ) = ( z 1 , z 2 , … , z n ) (x_1, x_2, \dots , x_n) = (z_1, z_2, \dots, z_n) (x1,x2,,xn)=(z1,z2,,zn) ,所以满足传递性

3.5.4 A , B , C A,B,C A,B,C 是集合,证明:

KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ A \times (B \c…

(1) 证明 A × ( B ∪ C ) = ( A × B ) ∪ ( A × C ) A \times (B \cup C) = (A \times B) \cup (A \times C) A×(BC)=(A×B)(A×C)
A × ( B ∪ C ) A \times (B \cup C) A×(BC) 等价于
KaTeX parse error: No such environment: equation at position 8: \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲}̲ \{(x, y): x \i…其中 { ( x , y ) : x ∈ A , y ∈ B } \{(x, y): x \in A, y \in B\} {(x,y):xA,yB} 等价于 ( A × B ) (A \times B) (A×B) { ( x , y ) : x ∈ A , y ∈ C } \{(x, y): x \in A, y \in C\} {(x,y):xA,yC} 等价于 ( A × C ) (A \times C) (A×C)

所以 { ( x , y ) : x ∈ A , y ∈ B } ∪ { ( x , y ) : x ∈ A , y ∈ C } \{(x, y): x \in A, y \in B\} \cup \{(x, y): x \in A, y \in C\} {(x,y):xA,yB}{(x,y):xA,yC} 等价于 ( A × B ) ∪ ( A × C ) (A \times B) \cup (A \times C) (A×B)(A×C)

(2) 证明 A × ( B ∩ C ) = ( A × B ) ∩ ( A × C ) A \times (B \cap C) = (A \times B) \cap (A \times C) A×(BC)=(A×B)(A×C)
A × ( B ∩ C ) A \times (B \cap C) A×(BC) 等价于 { ( x , y ) : x ∈ A , y ∈ ( B ∩ C ) } \{(x,y): x \in A, y \in (B \cap C)\} {(x,y):xA,y(BC)}
{ ( x , y ) : x ∈ A , y ∈ ( B ∩ C ) } = { ( x , y ) : x ∈ A , y ∈ B , y ∈ C } = { ( x , y ) : x ∈ A , y ∈ B } ∩ { ( x , y ) : x ∈ A , x ∈ C } \{(x,y): x \in A, y \in (B \cap C)\} = \{(x, y): x \in A, y \in B, y \in C\} = \{(x,y): x \in A, y \in B\} \cap \{(x,y): x \in A, x \in C\} {(x,y):xA,y(BC)}={(x,y):xA,yB,yC}={(x,y):xA,yB}{(x,y):xA,xC}

所以: A × ( B ∩ C ) = ( A × B ) ∩ ( A × C ) A \times (B \cap C) = (A \times B) \cap (A \times C) A×(BC)=(A×B)(A×C)

(3) 证明 A × ( B \ C ) = ( A × B ) \ ( A × C ) A \times (B \backslash C) = (A \times B) \backslash (A \times C) A×(B\C)=(A×B)\(A×C)

A × ( B \ C ) A \times (B \backslash C) A×(B\C) 等价于: { ( x , y ) : x ∈ A , y ∈ ( B \ C ) } = { ( x , y ) : x ∈ A , y ∈ B , y ∉ C } = { ( x , y ) : x ∈ A , y ∈ B } \ { ( x , y ) : x ∈ A , y ∈ C } \{(x, y): x \in A, y \in (B \backslash C)\} = \{(x,y): x \in A, y \in B, y\notin C\} = \{(x,y): x \in A, y \in B\} \backslash \{(x,y): x \in A, y \in C\} {(x,y):xA,y(B\C)}={(x,y):xA,yB,y/C}={(x,y):xA,yB}\{(x,y):xA,yC}
所以 A × ( B \ C ) = ( A × B ) \ ( A × C ) A \times (B \backslash C) = (A \times B) \backslash (A \times C) A×(B\C)=(A×B)\(A×C)

3.5.5 设 A、B、C、D 是集合,证明:

(1) ( A × B ) ∩ ( C × D ) = ( A ∩ C ) × ( B × D ) (A \times B) \cap (C \times D) = (A \cap C) \times (B \times D) (A×B)(C×D)=(AC)×(B×D)
(2) ( A × B ) ∪ ( C × D ) = ( A ∪ C ) × ( B ∪ D ) (A \times B) \cup (C \times D) = (A \cup C) \times (B \cup D) (A×B)(C×D)=(AC)×(BD) 是否成立?
(3) ( A × B ) \ ( C × D ) = ( A \ C ) × ( B \ D ) (A \times B) \backslash (C \times D) = (A \backslash C) \times (B \backslash D) (A×B)\(C×D)=(A\C)×(B\D) 是否成立?

(1) ( A × B ) (A \times B) (A×B) 等价于 { ( x , y ) : x ∈ A , y ∈ B } \{(x,y): x \in A, y \in B\} {(x,y):xA,yB}
( C × D ) (C \times D) (C×D) 等价于 { ( x , y ) : x ∈ C , y ∈ D } \{(x,y): x \in C, y \in D\} {(x,y):xC,yD}
所以有:
KaTeX parse error: No such environment: split at position 8: \begin{̲s̲p̲l̲i̲t̲}̲ & (A \times B…

(2) 不成立,因为我们可以举出反例:
我们可以构造个序偶 ( x , y ) (x, y) (x,y) 满足 x ∈ A \ C , y ∈ D \ B x \in A \backslash C, y \in D \backslash B xA\C,yD\B。 那么 ( x , y ) ∉ ( A × B ) (x,y) \notin (A \times B) (x,y)/(A×B) 同时, ( x , y ) ∉ ( C × D ) (x,y) \notin (C \times D) (x,y)/(C×D)
所以 ( x , y ) ∉ ( A × B ) ∪ ( C × D ) (x,y) \notin (A \times B) \cup (C \times D) (x,y)/(A×B)(C×D)
但是我们知道 x ∈ ( A ∪ C ) , y ∈ ( B ∪ D ) x \in (A \cup C), y \in (B \cup D) x(AC),y(BD),所以 ( x , y ) ∈ ( A ∪ C ) × ( B ∪ D ) (x, y) \in (A \cup C) \times (B \cup D) (x,y)(AC)×(BD)
所以 ( A × B ) ∪ ( C × D ) ≠ ( A ∪ C ) × ( B ∪ D ) (A \times B) \cup (C \times D) \neq (A \cup C) \times (B \cup D) (A×B)(C×D)=(AC)×(BD)

(3)不成立,我们可以举出反例:
我们可以构造个序偶 ( x , y ) (x, y) (x,y) 满足 x ∈ A \ C , y ∈ B ∩ D x \in A \backslash C, y \in B \cap D xA\C,yBD
那么 ( x , y ) ∈ A × B (x, y) \in A \times B (x,y)A×B, ( x , y ) ∉ C × D (x,y) \notin C \times D (x,y)/C×D, 所以 ( x , y ) ∈ ( A × B ) \ ( C × D ) (x,y) \in (A \times B) \backslash (C \times D) (x,y)(A×B)\(C×D)
我们又知道 y ∉ B \ D y \notin B \backslash D y/B\D,所以 ( x , y ) ∉ ( A \ C ) × ( B \ D ) (x,y) \notin (A \backslash C) \times (B \backslash D) (x,y)/(A\C)×(B\D)
所以 ( A × B ) \ ( C × D ) ≠ ( A \ C ) × ( B \ D ) (A \times B) \backslash (C \times D) \neq (A \backslash C) \times (B \backslash D) (A×B)\(C×D)=(A\C)×(B\D)

3.5.6 设 A、B、C、D 是非空集合,证明:

(1) A × B ⊆ C × D A \times B \subseteq C \times D A×BC×D 当且仅当 A ⊆ C , B ⊆ D A \subseteq C, B \subseteq D AC,BD
(2) A × B = C × D A \times B = C \times D A×B=C×D 当且仅当 A = C , B = D A = C, B = D A=C,B=D

证明(1):
KaTeX parse error: No such environment: split at position 8: \begin{̲s̲p̲l̲i̲t̲}̲ & A \times B …
证明(2):
$$
\begin{split}
& A \times B = C \times D \
& \Leftrightarrow
\begin{cases}
\forall (x,y) \in A \times B \Rightarrow (x,y) \in C \times D \
\forall (x,y) \in C \times D \Rightarrow (x,y ) \in A \times B
\end{cases}\
& \Leftrightarrow
\begin{cases}
\forall x \in A \Rightarrow x \in C \
\forall x \in C \Rightarrow x \in A \
\forall y \in B \Rightarrow x \in D \
\forall y \in D \Rightarrow x \in B \
\end{cases} \
& \Leftrightarrow
\begin{cases}
A = C \
B = D
\end{cases}

\end{split}
$$

3.5.7 设 X、Y 是集合,并设 π X × Y → X ( x , y ) : = x \pi_{X \times Y \rightarrow X} (x,y) := x πX×YX(x,y):=x π X × Y → X ( x , y ) : = y \pi_{X \times Y \rightarrow X} (x,y) := y πX×YX(x,y):=y 。证明对于任何函数 f : Z → X f:Z \rightarrow X f:ZX g : Z → Y g : Z \rightarrow Y g:ZY 存在唯一的函数 h : Z → X × Y h: Z \rightarrow X \times Y h:ZX×Y,使得 π X × Y → X ∘ h = f \pi_{X \times Y \rightarrow X} \circ h = f πX×YXh=f π X × Y → Y ∘ h = g \pi_{X \times Y \rightarrow Y} \circ h = g πX×YYh=g

证明:设 h ( z ) : = ( h x ( z ) , h y ( z ) ) h(z) := (h_x(z), h_y(z)) h(z):=(hx(z),hy(z)) ,那么 h x ( z ) = f ( z ) , h y ( z ) = g ( z ) h_x(z) = f(z), h_y(z) = g(z) hx(z)=f(z),hy(z)=g(z) 所以 h h h 是唯一确定的。

3.5.8 设 X 1 , … , X n X_1, \dots, X_n X1,,Xn 是集合,那么笛卡尔积 ∏ i = 1 n X i \prod_{i=1}^{n}X_i i=1nXi 是空的,当且仅当至少有一个 X i X_i Xi 是空的。

(1)当 X i X_i Xi 是空的时, ∏ i = 1 n X i \prod_{i=1}^{n}X_i i=1nXi 是空的。
(2)用反证法证明 ∏ i = 1 n X i \prod_{i=1}^{n}X_i i=1nXi 是空的,可以推出 X 1 , … , X n X_1, \dots, X_n X1,,Xn 至少有一个是空。
假设 X 1 , … , X n X_1, \dots, X_n X1,,Xn 全都不空,那么对于任意的 1 ≤ i ≤ n 1 \leq i \leq n 1in我们可以选出 x i ∈ X i x_i \in X_i xiXi
那么 ( x 1 , … , x n ) (x_1, \dots, x_n) (x1,,xn) ∏ i = 1 n X i \prod_{i=1}^{n}X_i i=1nXi 的一个元素。所以 ∏ i = 1 n X i \prod_{i=1}^{n}X_i i=1nXi 非空。

3.5.9 假设I 和J 是两个集合,并且对于一切 α ∈ I \alpha \in I αI, A α A_\alpha Aα 是一个集合,对于一切 β ∈ J \beta \in J βJ, B β B_\beta Bβ 也是一个集合。证明:

KaTeX parse error: No such environment: equation at position 8: \begin{̲e̲q̲u̲a̲t̲i̲o̲n̲}̲ (\cup_{\alpha …

(1) 先证明 ( ∪ α ∈ I A α ) ∩ ( ∪ β ∈ J B β ) (\cup_{\alpha \in I} A_\alpha) \cap (\cup_{\beta \in J} B_\beta) (αIAα)(βJBβ) 中的元素都是 ∪ ( α , β ) ∈ I × J ( A α ∩ B β ) \cup_{(\alpha, \beta)\in I \times J} (A_\alpha \cap B_\beta) (α,β)I×J(AαBβ) 的元素。

x ∈ ( ∪ α ∈ I A α ) ∩ ( ∪ β ∈ J B β ) x \in (\cup_{\alpha \in I} A_\alpha) \cap (\cup_{\beta \in J} B_\beta) x(αIAα)(βJBβ)
那么 x ∈ ∪ α ∈ I A α x \in \cup_{\alpha \in I} A_\alpha xαIAα ,同时 x ∈ ∪ β ∈ J B β x \in \cup_{\beta \in J} B_\beta xβJBβ
那么 ∃ α ∈ I , x ∈ A α \exists \alpha \in I, x \in A_\alpha αI,xAα ,同时 ∃ β ∈ J , x ∈ B β \exists \beta \in J, x \in B_\beta βJ,xBβ
那么 ∃ ( α , β ) ∈ I × J , x ∈ A α ∩ B β \exists (\alpha, \beta) \in I \times J, x \in A_\alpha \cap B_\beta (α,β)I×J,xAαBβ
那么 x ∈ ∪ ( α , β ) ∈ I × J ( A α ∩ B β ) x \in \cup_{(\alpha, \beta)\in I \times J} (A_\alpha \cap B_\beta) x(α,β)I×J(AαBβ)

(2) 再证明 ∪ ( α , β ) ∈ I × J ( A α ∩ B β ) \cup_{(\alpha, \beta)\in I \times J} (A_\alpha \cap B_\beta) (α,β)I×J(AαBβ) 的元素也都是 ( ∪ α ∈ I A α ) ∩ ( ∪ β ∈ J B β ) (\cup_{\alpha \in I} A_\alpha) \cap (\cup_{\beta \in J} B_\beta) (αIAα)(βJBβ) 的元素。
x ∈ ∪ ( α , β ) ∈ I × J ( A α ∩ B β ) x \in \cup_{(\alpha, \beta)\in I \times J} (A_\alpha \cap B_\beta) x(α,β)I×J(AαBβ)
那么 ∃ ( α , β ) ∈ I × J , x ∈ A α ∩ B β \exists (\alpha, \beta) \in I \times J, x \in A_\alpha \cap B_\beta (α,β)I×J,xAαBβ
那么 ∃ α ∈ I , x ∈ A α \exists \alpha \in I, x \in A_\alpha αI,xAα ,同时 ∃ β ∈ J , x ∈ B β \exists \beta \in J, x \in B_\beta βJ,xBβ
那么 x ∈ ∪ α ∈ I A α x \in \cup_{\alpha \in I} A_\alpha xαIAα ,同时 x ∈ ∪ β ∈ J B β x \in \cup_{\beta \in J} B_\beta xβJBβ
那么 x ∈ ( ∪ α ∈ I A α ) ∩ ( ∪ β ∈ J B β ) x \in (\cup_{\alpha \in I} A_\alpha) \cap (\cup_{\beta \in J} B_\beta) x(αIAα)(βJBβ)

3.5.10 f : X → Y f: X \rightarrow Y f:XY 是一个函数,定义 f 的图像是由 { ( x , f ( x ) ) : x ∈ X } \{(x, f(x)): x \in X\} {(x,f(x)):xX} 确定的 X × Y X \times Y X×Y 的子集。证明两个函数相等当且仅当它们有相同的图像。反之,如果 G 是 X × Y X \times Y X×Y 的一个子集,具有这样的性质:对于每一个 x ∈ X x \in X xX,集合 { y ∈ Y : ( x , y ) ∈ G } \{y \in Y:(x,y) \in G\} {yY:(x,y)G} 恰有一个元素,证明恰存在一个函数 f : X → Y f:X \rightarrow Y f:XY,它的图像等于 G。

第一问:设 f f f 的图像为 F F F g g g 的图像为 G G G

(1)先证明 f = g f=g f=g 可以推出 F = G F = G F=G。(略)
(2)再证明 F = G F = G F=G 可以推出 f = g f =g f=g。(略)

第二问:(1)先证明存在函数 f f f,(2)再证明函数 f f f 是唯一的。
(1) 很简单,这里略
(2)反证法,假设 f , g f, g f,g 都满足图像为 G G G。由第一问可知, f = g f=g f=g

3.5.11 证明公理 3.10 可以从引理 3.4.9 和集合论的其他公理推导出来。于是引理3.4.9 可以作为幂集公理的替换形式。

幂集公理:设 X X X Y Y Y 是集合,从 X X X Y Y Y 的一切函数形成一个集合 Y X Y^X YX
集合 X X X Y Y Y 可以形成笛卡尔乘积 X × Y X\times Y X×Y。那么由引理3.4.9可知, X × Y X\times Y X×Y的所有子集形成一个集合 2 X × Y 2^{X \times Y} 2X×Y,这个集合称为 X × Y X \times Y X×Y 的幂集。
使用公理 3.5 (分离公理),可以把满足垂线判别法的 X × Y X\times Y X×Y的子集取出,这个子集就是 Y X Y^X YX

3.5.12 设 f : N × N → N f:N \times N \rightarrow N f:N×NN 是一个函数,并设 c 是一个自然数,证明存在一个函数 a : N → N a: N \rightarrow N a:NN ,使得 a ( 0 ) = c a(0)=c a(0)=c,并且对于一切 n ∈ N n \in N nN 满足 a ( n + + ) = f ( n , a ( n ) ) a(n++) =f(n,a(n)) a(n++)=f(n,a(n)),进而证明这个函数是唯一的。

3.5.13

不会做。。

3.5.14

不会做。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值