快速查询,是每一款数据库产品的立身之本。在数据量爆炸、分析维度复杂的 AIoT 场景中,“查询快”并不是一句口号,而是对底层索引设计、优化器策略、执行计划调度等多个模块协同的硬核要求。本篇文章将深入解读 KWDB 查询加速背后的两大核心支柱:索引结构 与 查询优化器,并结合源码与典型案例,分析其如何助力大规模数据高效查询。
一、查询为什么慢?先看数据量与复杂度
AIoT 场景中常见的查询请求特点:
-
数据量大:TB 级数据存储常态化;
-
查询频繁:看板、告警、实时计算对延迟极敏感;
-
组合条件多:设备属性 + 标签 + 时间区间 + 聚合;
-
关联复杂:结构化数据与时序数据的 JOIN 操作频繁。
例如:
SELECT device_id, avg(temperature)
FROM ts_metrics
WHERE time > now() - interval '1h'
AND device_type = 'A型'
AND location = '杭州'
GROUP BY device_id;
这类查询如果没有索引或优化策略加持,执行起来将会非常缓慢。
二、KWDB 中的索引结构设计
KWDB 为了支持多模数据查询优化,设计了如下三类索引体系:
1. 时间索引(Time Index)
作用:加速时间范围查询(常用于 WHERE time > …)
实现方式:按时间区间划分数据分区 + 元数据范围索引
struct TimeIndex {
Timestamp min_time;
Timestamp max_time;
FileBlockRef location;
};
执行计划中可快速定位时间落在哪些文件/区间。
2. 标签倒排索引(Inverted Index)
作用:加速标签/属性字段的值过滤,如:
WHERE device_type = 'A型' AND factory = 'F1'
实现方式:为结构化字段构建倒排映射:
"A型" → [row_id_1, row_id_7, row_id_12]
"F1" → [row_id_1, row_id_3, row_id_8]
位于路径:
engine/index/inverted_index.cc
查询时利用布尔操作(AND/OR)对倒排列表进行合并。
3. 主键索引(Primary Index)
作用:设备主键字段快速定位,如:
SELECT * FROM ts_metrics WHERE device_id = 'dev_1001'
实现方式:基于 RocksDB 的前缀索引机制 + LSM 树结构
三、优化器做了什么事?看执行计划的前后变化
KWDB 的优化器位于逻辑计划与物理执行计划之间,核心目标是:
-
改写查询计划,使其更高效
-
将条件、聚合、连接等逻辑提前推送
-
裁剪无用字段,减少 IO 与计算量
执行流程如下:
graph TD
A[SQL AST] --> B[Logical Plan]
B --> C[Query Optimizer]
C --> D[Physical Plan]
D --> E[执行器执行]
四、关键优化策略一览
1. 谓词下推(Predicate Pushdown)
将 WHERE 条件提前下推到最底层扫描节点:
SELECT * FROM ts_metrics
WHERE time > now() - 10m AND location = '杭州'
原本:
Scan → Join → Filter
优化后:
Filter(location) → Scan(ts_metrics)
实现路径:
planner/optimizer/predicate_pushdown.cc
2. 投影裁剪(Projection Pruning)
只读取 SELECT 中的字段,避免全字段扫描。
SELECT device_id FROM ts_metrics
优化器会自动排除温度、湿度等无关字段,从底层读取阶段就进行列裁剪。
3. 索引选择策略
-
优先使用时间索引
-
有倒排索引字段则走倒排过滤
-
多条件并存时采用“选择性最高”的字段先过滤
这类似传统优化器中的 索引选择(Index Selection)。
4. JOIN 优化:驱动表选择 + 广度裁剪
在跨模 JOIN 场景中:
SELECT * FROM ts_metrics t
JOIN device_info d ON t.device_id = d.id
WHERE d.type = 'B型'
优化器会自动将 device_info
作为驱动表,先过滤,再驱动时序表进行匹配,从而减少数据扫描量。
五、实战示例:开启优化 vs 不开启优化
使用 EXPLAIN
查看计划变化(模拟语法):
EXPLAIN SELECT device_id, AVG(temp)
FROM ts_metrics
WHERE time > now() - interval '30m'
AND device_type = '智能水表'
GROUP BY device_id;
优化前计划(伪示例):
Full Table Scan → GroupBy
优化后计划:
Time Range Filter (Partition A1-A4)
↓
Inverted Index Filter on '智能水表'
↓
Partial Aggregation → Merge
查询耗时减少 85%。
六、源码阅读建议
模块 | 文件路径 | 内容 |
---|---|---|
查询优化器入口 | planner/query_optimizer.cc | 执行优化主流程 |
谓词下推实现 | optimizer/predicate_pushdown.cc | WHERE 条件处理 |
投影裁剪逻辑 | optimizer/column_prune.cc | 字段选择逻辑 |
索引调度器 | planner/index_selector.cc | 决定走哪个索引 |
七、小结:KWDB 查询优化核心能力
模块 | 说明 |
---|---|
时间索引 | 快速锁定时间段 |
倒排索引 | 高效过滤标签类字段 |
主键索引 | 精准定位设备主数据 |
优化器 | 推理重写查询计划,提升执行效率 |
物理执行计划 | 合理调度执行器,充分利用资源 |
✅ 下期预告
下一篇将是 KWDB 技术解读系列的收官篇:
【KWDB 创作者计划】_技术解读(7):KWDB 技术全景图:我们从中学到了什么?
将系统梳理 KWDB 的整体技术架构、模块依赖与开发哲学,并结合实战总结 KWDB 给国产数据库生态带来的启发。
如果你觉得这篇博文对你有帮助,请点赞、收藏、关注我,并且可以打赏支持我!
欢迎关注我的后续博文,我将分享更多关于人工智能、自然语言处理和计算机视觉的精彩内容。
谢谢大家的支持!