基于深度卷积神经网络的语义地图构建

本文探讨了基于深度卷积神经网络的语义地图构建方法,包括使用DeepLab算法网络,ResNet101结构,空洞金字塔池化操作,以及结合深度信息的门控模块。通过2D图像语义分割、帧间位姿估计和3D语义点云融合,构建带有标签信息的3D地图。实验验证了不同组件对2D和3D分割效果的影响,并探讨了3D稠密条件随机场在地图优化中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(一)相关研究及特点

  • 语义分割

语义信息:物体类别、目标检测、语义分割等。

语义分割即对图像中每个像素分配类别标签。目前最主流的是深度学习方法,代表性的方法是全卷积神经网络(fully convolutional neural network,FCN),可以将神经网络的最后几层全连接层替换成卷积层,实现端到端的学习,且在任何尺寸的图片上都可以进行预测。后续 的图像语义分割方法主要是从 3 个方面进行改进: 1) 采用更深的网络结构.例如,将 16 层的 VGG16 网络结构换成 101 层的 ResNet101或 152 层的 ResNet152,从而能够表示更复杂的模型,学习到更具有区分性的特征.2) 在预测结果后面加上后处理操作.例如引入条件随机场(CRF),可以 通过近似均值场推断将其整合到网络中,得到端到 端的结果,也有一些方法会在条件随机场的基础上加入物体、边等额外的信息.3) 采用编 码―解码的结构,如 DecovNet 和 SegNet 等 方法,既可以提取到图像特征,也可以保持较大的感受野,但网络的深度也会更深。

优秀算法:

  1. 同时进行检测和实例分割的 Mask R-CNN:侧重于对检测结果的利用,利用检测到的物体的定位信息提高分割的 效果.基于检测信息可以完成实例级别的分割,属于实例分割。
  2. 语义分割算法 PSPNet:语义分割的效果很好,采用主干网络,PSPNet 采用不同尺度的池化 操作;在多尺度合并的时候采用的是通道连接。
  3. 语义分割算法DeepLab:语义分割的效果很好,采用了PSPNet相同的主干网络,采用了不同尺度的空洞卷积;在多尺度合并的时候采用元素级别相加。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值