8.在不确定中寻找确定:后端之卡尔曼滤波

1.滤波是一种信号处理技术,用于改变或调整信号的频率内容或振幅特性。
2.卡尔曼滤波(Kalman Filter)是一种用于估计系统状态的滤波器,它基于线性系统动态模型和观测模型,并利用最小均方误差准则进行状态估计。
经典的卡尔曼滤波算法由五个公式组成:

3.卡尔曼滤波的算法过程:
初始化:
初始化系统状态向量(状态变量的估计):$x_0$
初始化系统状态协方差矩阵(状态估计的不确定度):$P_0$
预测(时间更新):
根据系统动态模型,通过状态转移方程预测下一时刻的状态估计:$\hat{x}{k|k-1} = F_k \hat{x}{k-1|k-1} + B_k u_k$
根据系统动态模型和状态协方差矩阵,通过状态转移方程预测下一时刻的状态协方差:$P_{k|k-1} = F_k P_{k-1|k-1} F_k^T + Q_k$
$F_k$ 是状态转移矩阵,$B_k$ 是输入控制矩阵,$u_k$ 是输入控制向量,$Q_k$ 是过程噪声协方差矩阵。

更新(测量更新):
获取当前时刻的测量值:$z_k$
计算测量模型的观测残差(测量预测与实际测量之间的差异):$y_k = z_k - H_k \hat{x}_{k|k-1}$
计算测量模型的残差协方差矩阵:$S_k = H_k P_{k|k-1} H_k^T + R_k$
$H_k$ 是观测矩阵,$R_k$ 是观测噪声协方差矩阵。
计算卡尔曼增益(用于融合预测和测量信息):$K_k = P_{k|k-1} H_k^T S_k^{-1}$
更新状态估计:$\hat{x}{k|k} = \hat{x}{k|k-1} + K_k y_k$
更新状态协方差:$P_{k|k} = (I - K_k H_k) P_{k|k-1}$

重复步骤2和步骤3,进行下一时刻的预测和更新。

思考:

1.卡尔曼滤波适用于什么系统?
线性系统:卡尔曼滤波器的基本原理是基于线性系统动态模型和观测模型。因此,系统的状态转移方程和观测方程必须是线性的。


连续时间系统和离散时间系统:卡尔曼滤波器可以应用于连续时间和离散时间的系统。对于连续时间系统,使用卡尔曼滤波器的是卡尔曼滤波(Kalman Filter);对于离散时间系统,使用卡尔曼滤波器的是离散卡尔曼滤波(Discrete Kalman Filter)。


高斯噪声模型:卡尔曼滤波器假设系统的噪声满足高斯分布。这包括系统动态模型中的过程噪声和观测模型中的观测噪声。如果系统噪声不符合高斯分布,可以考虑使用扩展卡尔曼滤波器(Extended Kalman Filter)或其他非线性滤波器。


系统具有有限维度:卡尔曼滤波器适用于状态向量和观测向量具有有限维度的系统。对于高维度的系统,卡尔曼滤波器的计算复杂度会增加,可能需要使用其他技术进行近似或优化。

2.卡尔曼增益的含义是什么?

数学解释:卡尔曼增益是一个权重系数,用于衡量预测信息和测量信息在状态估计中的相对重要性。它是根据系统的预测协方差和测量协方差来计算的。增益越高,表示测量信息对状态估计的影响越大;增益越低,表示预测信息对状态估计的影响越大。

实际应用:卡尔曼增益在卡尔曼滤波中起到了一个调节作用,它将系统的预测信息和实际测量信息进行加权融合,得到最优的状态估计。具体而言,卡尔曼增益通过对比预测信息的不确定度(由预测协方差矩阵表示)和测量信息的不确定度(由测量协方差矩阵表示),决定了预测信息和测量信息在状态更新中的相对贡献。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值