当下语音识别技术正以前所未有的速度发展,极大地推动了人机交互的便利性和效率。OpenAI的Whisper系统无疑是这一领域的佼佼者,它凭借其卓越的性能、广泛的适用性和创新的技术架构,正在重新定义语音转文本技术的规则。今天我们一起了解一下Whisper的架构、核心能力以及其丰富的参数设置,帮助读者更好地理解这一前沿技术。
Whisper的基石:强大的架构与训练
Whisper的核心是一个基于Transformer的序列到序列模型,这一模型经过680,000小时的标记音频数据训练,堪称有史以来创建的最大的监督语音识别数据集之一。如此庞大的数据集为Whisper提供了无与伦比的优势,使其能够识别各种口音、处理背景噪音,并适应不同的音频质量。
Whisper的架构设计使其能够同时处理多项任务,包括多语种语音识别、语音翻译、口语识别和语音活动检测。这种统一的处理方式不仅提高了效率,还确保了任务之间的无缝衔接。通过采用智能的令牌(token)系统,Whisper能够在转录和翻译过程中管理各种任务。从<|startoftranscript|>令牌开始,它预测语言(支持99种语言),对于非语音部分使用<|nospeech|>令牌,通过<|transcribe|>或<|translate|>指定任务类型,并使用<|notimestamps|>令牌控制时间戳,每个预测都以<|endoftranscript|>令牌结束,从而确保了音频任务的清晰处理