在人工智能的发展进程中,多代理系统(Multi-Agent Systems)(构建多代理检索增强生成(Multi-Agent Retrieval-Augmented Generation)系统)作为一种创新的架构模式逐渐崭露头角。随着大型语言模型如 GPT-4 等的出现,尽管它们在诸多方面展现出强大能力,但在处理复杂的现实世界多步骤任务时仍存在局限。多代理系统通过将任务分配给专门的代理,为解决此类问题提供了新的思路。对多代理系统的评估成为了关键环节,它有助于确定这种架构在不同场景下的有效性和适用性,进而指导人工智能系统的优化与发展。
一、多代理系统的基本概念与架构
多代理系统可类比为一个交响乐团,每个代理如同乐团中的乐器演奏者,各司其职。在实际应用中,例如旅行规划场景,会有专门负责航班预订的代理、处理酒店预订的代理以及安排活动的代理等。这种任务专业化的设计理念基于一个假设:相较于单个 AI 承担所有任务,将任务分散给多个专门的代理能够获得更优、更准确的结果。然而,这一过程并非一帆风顺,代理之间的通信和信息传递成为了关键挑战之一。
在技术实现层面,多代理系统的架构(