Kimi K1.5 作为一款前沿的多模态大语言模型,凭借其独特的强化学习训练方式和创新技术,展现出卓越的性能,在多个领域取得了显著成果,为人工智能的发展开辟了新路径。今天我们一起了解一下kimi1.5。
一、研究背景与创新点
传统的基于下一个标记预测的语言模型预训练,虽在计算规模扩展上有一定成效,但受限于可用训练数据的数量。随着数据增长的瓶颈逐渐显现,探索新的扩展维度成为提升人工智能性能的关键。强化学习(RL)(深度解析 DeepSeek R1:强化学习与知识蒸馏的协同力量)为这一困境提供了新的解决思路。通过与大语言模型相结合,模型能够依据奖励机制自主探索,突破静态数据集的限制,实现更广泛的数据学习,为模型性能的持续提升带来可能。
Kimi K1.5 正是基于此背景,在设计与训练过程中融入了诸多创新点。一方面,通过将强化学习的上下文窗口扩展至 128k,借助部分滚动(partial rollouts)技术提高训练效率,实现了长上下文扩展。这一突破使得模型在处理复杂任务时,能够利用更长的上下文信息,从而提升推理能力。另一方面,在策略优化上,Kimi K1.5 推导了长思维链(long-CoT)(Chain-of-Thought (CoT):引导大型语言模型解决问题的有效策略)强化学习的公式,并采用在线镜像下降(online mirror descent)的变体进行稳健的策略优化。同时,通过有效的采样策略、长度惩罚机制和数据配方优化,进一步提升了模型性能。这些创新点共同构建了一个简洁而高效的强化学习框架,使 Kimi K1.5 在不依赖复杂技术的情况下,也能展现出强大的性能。
二、模型训练过程
(一)强化学习提示集整理
高质量的强化学习(Paper Review: DeepSeek-R1——强化学习驱动的大语言模型推理能力提升)提示集是 Kimi K1.5 训练的重要基础。在构建提示集时,团队着重考虑了三个关键特性:多样覆盖性、平衡难度和准确可评估性。多样覆盖性要求提示跨越多个学科领域&#