推理框架作为 AI 解决复杂问题的核心机制,正逐渐成为研究和应用的焦点。ReAct、思维链(Chain-of-Thought,CoT)(Chain-of-Thought (CoT):引导大型语言模型解决问题的有效策略)和思维树(Tree-of-Thoughts,ToT)这三种推理框架各具特色,它们从不同角度模拟人类思维方式,为 AI 提供了多样化的问题解决策略。深入研究和比较这些框架,对于推动人工智能的发展、拓展其应用场景具有重要意义。
一、ReAct 框架:边推理边行动的智能决策
ReAct,即 “推理与行动”,是一种将推理和行动紧密结合的框架,让 AI 在解决问题时能够实时根据环境反馈调整策略。这一框架的核心在于反馈循环和情境感知。在反馈循环机制下,AI 执行每一个行动后,都会根据行动结果获取反馈信息,并利用这些信息优化后续行动。例如在机器人导航任务中,机器人每前进一步,都会通过传感器获取周围环境