要计算向量 a \mathbf{a} a 在向量 b \mathbf{b} b 上的投影,可以分为 投影长度 和 投影向量 两种情况。
1. 投影长度
向量 a \mathbf{a} a 在向量 b \mathbf{b} b 上的投影长度是:
投影长度 = a ⋅ b ∥ b ∥ \text{投影长度} = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{b}\|} 投影长度=∥b∥a⋅b
其中:
- a ⋅ b \mathbf{a} \cdot \mathbf{b} a⋅b 是点乘。
- ∥ b ∥ = b 1 2 + b 2 2 + b 3 2 \|\mathbf{b}\| = \sqrt{b_1^2 + b_2^2 + b_3^2} ∥b∥=b12+b22+b32 是向量 b \mathbf{b} b 的模长。
2. 投影向量
向量 a \mathbf{a} a 在向量 b \mathbf{b} b 上的投影向量是:
投影向量 = ( a ⋅ b ∥ b ∥ 2 ) b \text{投影向量} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{b}\|^2}\right) \mathbf{b} 投影向量=(∥b∥2a⋅b)b
其中:
- 分母 ∥ b ∥ 2 = b 1 2 + b 2 2 + b 3 2 \|\mathbf{b}\|^2 = b_1^2 + b_2^2 + b_3^2 ∥b∥2=b12+b22+b32 是 b \mathbf{b} b 的模长平方。
- b \mathbf{b} b 是向量方向。
3. 推导过程
几何解释
- 投影长度是 a \mathbf{a} a 在 b \mathbf{b} b 的方向上的分量大小。
- 投影向量是将投影长度重新沿 b \mathbf{b} b 的方向进行缩放,得到在 b \mathbf{b} b 方向上的向量。
利用点乘公式:
点乘定义:
a ⋅ b = ∥ a ∥ ∥ b ∥ cos θ \mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos\theta a⋅b=∥a∥∥b∥cosθ
而投影长度是:
投影长度 = ∥ a ∥ cos θ = a ⋅ b ∥ b ∥ \text{投影长度} = \|\mathbf{a}\| \cos\theta = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{b}\|} 投影长度=∥a∥cosθ=∥b∥a⋅b
为了得到投影向量,我们需要将投影长度乘以 b \mathbf{b} b 的单位向量:
投影向量 = 投影长度 ⋅ b ∥ b ∥ \text{投影向量} = \text{投影长度} \cdot \frac{\mathbf{b}}{\|\mathbf{b}\|} 投影向量=投影长度⋅∥b∥b
整理得到:
投影向量 = ( a ⋅ b ∥ b ∥ 2 ) b \text{投影向量} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{b}\|^2}\right) \mathbf{b} 投影向量=(∥b∥2a⋅b)b
4. 示例计算
已知:
a = ( 3 , 4 , 0 ) \mathbf{a} = (3, 4, 0) a=(3,4,0), b = ( 1 , 2 , 2 ) \mathbf{b} = (1, 2, 2) b=(1,2,2)
- 计算 a ⋅ b \mathbf{a} \cdot \mathbf{b} a⋅b:
a ⋅ b = 3 ⋅ 1 + 4 ⋅ 2 + 0 ⋅ 2 = 3 + 8 + 0 = 11 \mathbf{a} \cdot \mathbf{b} = 3 \cdot 1 + 4 \cdot 2 + 0 \cdot 2 = 3 + 8 + 0 = 11 a⋅b=3⋅1+4⋅2+0⋅2=3+8+0=11
- 计算 ∥ b ∥ \|\mathbf{b}\| ∥b∥:
∥ b ∥ = 1 2 + 2 2 + 2 2 = 1 + 4 + 4 = 9 = 3 \|\mathbf{b}\| = \sqrt{1^2 + 2^2 + 2^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3 ∥b∥=12+22+22=1+4+4=9=3
- 投影长度:
投影长度 = a ⋅ b ∥ b ∥ = 11 3 ≈ 3.67 \text{投影长度} = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{b}\|} = \frac{11}{3} \approx 3.67 投影长度=∥b∥a⋅b=311≈3.67
- 投影向量:
投影向量 = ( a ⋅ b ∥ b ∥ 2 ) b \text{投影向量} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{b}\|^2}\right) \mathbf{b} 投影向量=(∥b∥2a⋅b)b
∥ b ∥ 2 = 3 2 = 9 \|\mathbf{b}\|^2 = 3^2 = 9 ∥b∥2=32=9
投影向量 = ( 11 9 ) ( 1 , 2 , 2 ) = ( 11 9 , 22 9 , 22 9 ) \text{投影向量} = \left(\frac{11}{9}\right) (1, 2, 2) = \left(\frac{11}{9}, \frac{22}{9}, \frac{22}{9}\right) 投影向量=(911)(1,2,2)=(911,922,922)
投影向量 = ( 1.22 , 2.44 , 2.44 ) \text{投影向量} = \left(1.22, 2.44, 2.44\right) 投影向量=(1.22,2.44,2.44)
总结
- 投影长度: a ⋅ b ∥ b ∥ \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{b}\|} ∥b∥a⋅b
- 投影向量: ( a ⋅ b ∥ b ∥ 2 ) b \left(\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{b}\|^2}\right) \mathbf{b} (∥b∥2a⋅b)b
这两个公式可以帮助计算投影的大小和方向。