深度学习模型最后一层激活和损失函数

本文探讨了深度学习中不同任务类型(如二分类、多分类、多标签分类及回归)与模型最后一层激活函数(sigmoid、softmax)及损失函数(binary_crossentropy、categorical_crossentropy、mse)之间的匹配关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考:《Python深度学习》

类型最后一层激活损失函数
二分类sigmoidbinary_crossentropy
多分类单标签softmaxcategorical_crossentropy
多分类多标签sigmoidbinary_crossentropy
回归到任意值mse
回归到0-1sigmoidmse 或 binary_crossentropy
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

XerCis

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值