Object Recognition and Scene Understanding(六)OpenCV中HOG+SVM目标检测

本文详细介绍了如何使用HOG特征和SVM分类器进行目标检测,特别是行人检测。通过libsvm在MATLAB中求取权重,并在OpenCV中构建detector。文章涵盖了从样本准备、特征提取到SVM训练的完整流程,并提供了训练和检测的代码参考。
摘要由CSDN通过智能技术生成

参考:利用Hog特征和SVM分类器进行行人检测http://blog.csdn.net/carson2005/article/details/7841443

 

HOG+SVM由于其特性,对行人检测有非常好的效果,但是对其他目标检测也有好效果。这里就把范围扩大些。

 

carson2005的博文中介绍了利用opencv实现样本训练和目标检测。利用Libsvm也可以进行处理。

1.使用libsvm求取权重

http://www.opencv.org.cn/forum/viewtopic.php?f=1&t=9146

 

--------使用libsvm求取权重,即OpenCv中的detector[]----------

直接使用libsvm,需要按它的格式构造数据,下面简述在matlab下使用libsvm

下载libsvm-mat-2.9-1
方法1:
切换到libsvm-mat-2.9-1所在的目录下,打开MATLAB键入:
mex -setup

方法2:matlab菜单 File-->set path 将libsvm-mat-2.9-1所在路径添加进来。
----------------------
下面以libsvm-mat-2.9-1自带的heart_scale为例进行介绍

-----------kernel_type为线性----------------------------------
load heart_scale.mat
train_data = heart_scale_inst(1:150,:);
train_label = heart_scale_label(1:150,:);
test_data = heart_scale_inst(151:270,:);
test_label = heart_scale_label(151:270,:);
model_linear = svmtrain(train_label, train_data, '-t 0');
[predict_label_L, accuracy_L, dec_values_L] = svmpredict(test_label, test_data,model_linear);
----------训练后得到模型-------

model_linear =

Parameters: [5x1 double]
nr_class: 2
totalSV: 58
rho: -1.1848
Label: [2x1 double]
ProbA: []
ProbB: []
nSV: [2x1 double]
sv_coef: [58x1 double]
SVs: [58x13 double]
-----------如何从模型中求取权重系数----
参考以下网站,可知 
http://www.csie.ntu.edu.tw/~cjlin/libsvm/faq.html#f804

对于2类问题,可如下求解线性问题(y=wx+b)的权重系数w和b

w = model_linear.SVs' * model_linear.sv_coef;
b = -model_linear.rho;

---------

求出的w即是OpenCv中的detector[]

 

下面直接把carson2005的文章贴过来吧。

2.OpenCV求detector

之前介绍过Hog特征(http://blog.csdn.net/carson2005/article/details/7782726),也介绍过SVM分类器(http://blog.csdn.net/carson2005/article/details/6453502 );而本文的目的在于介绍利用Hog特征和SVM分类器来进行行人检测。

        在2005CVPR上,来自法国的研究人员

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值