pytorch里的argmax和argmin的理解

本文详细介绍了PyTorch中argmin和argmax函数的使用方法,包括如何获取张量中所有元素的最大值/最小值的索引,以及在特定维度上进行操作的技巧。通过实例演示了不同参数设置下函数的行为,帮助读者深入理解这两个函数的功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

返回输入张量中所有元素的最大值/最小值的索引。

torch.argmin(dim=None, keepdim=False) → LongTensor
torch.argmax(input, dim, keepdim=False) → LongTensor

dim:用于指定在哪个维度进行操作
keepdim:若为True,则输出的索引的维数和输入的张量的维度保持一致,一般默认为False

实验如下

a = torch.randn(4, 4)
print(a)
print(a.flatten())
print(torch.argmax(a))  # 不指定dim,则返回张量展开为一维最大值的索引
"""
tensor([[ 1.0284, -0.1810,  2.2535,  1.0803],
        [ 0.0180,  0.8234, -1.8942, -0.0986],
        [-0.7464,  0.5619,  1.1605,  0.3683],
        [-0.7363, -0.2394, -0.6425, -0.5612]])
tensor([ 1.0284, -0.1810,  2.2535,  1.0803,  0.0180,  0.8234, -1.8942, -0.0986,
        -0.7464,  0.5619,  1.1605,  0.3683, -0.7363, -0.2394, -0.6425, -0.5612])
tensor(2)
"""
a = torch.randn(4, 4)
print(a)
print(torch.argmax(a), dim=1)
"""
tensor([[-0.3381, -0.4999, -1.1872, -0.6996],
        [-1.1637, -1.9946, -1.5603,  3.1711],
        [ 0.1105, -1.4377,  0.0382, -0.3079],
        [ 2.2044,  0.9992, -1.6193, -0.2622]])
tensor([0, 3, 0, 0])
"""
<think>好的,我现在需要处理用户关于numpy中argmin函数的问题。首先,我得回忆一下argmin的基本用法功能。用户可能想了解如何正确使用这个函数,包括参数、返回值以及示例。 首先,我应该确认argmin的作用:返回数组中最小的元素的索引。这可能在处理数据时非常有用,比如找到最小值的位置。然后,我需要考虑不同的参数,比如axiskeepdims,用户可能会问到这些参数的具体影响。 接下来,我需要组织回答的结构。先介绍函数的基本用途,然后解释参数,接着给出示例代码。同时,根据用户的要求,代码需要用Python的格式展示,并且行内数学表达式用$符号包裹,比如形状的变化用$shape$表示。 用户还提到要生成相关问题,我需要想一些常见的问题,比如argminmin的区别,多维数组中的应用,性能问题,或者与argmax的对比。这些问题可以帮助用户更全面地理解函数的相关知识。 另外,需要确保引用的正确性。用户提供的引用中有关于PythonPyTorch的内容,但可能不直接相关。不过,如果有必要的话,可以提到相关的库,比如numpy的官方文档作为参考来源。但根据用户提供的引用,可能不需要直接引用,除非有具体的引用内容相关。不过用户示例中的引用可能只是示例,所以这可能不需要添加额外的引用,除非有特定的来源需要标注。 在写示例代码时,要注意展示不同情况下的使用,比如一维数组、二维数组指定不同的轴,以及keepdims参数的效果。这能帮助用户更直观地理解函数的行为。 同时,要检查是否有常见的错误或注意事项,比如当数组中有多个相同的最小值时,argmin只会返回第一个出现的索引,这一点需要明确指出,避免用户使用时出现误解。 最后,确保语言简洁明了,使用中文,并且符合格式要求,比如独立公式用$$...$$,但在这个问题中可能不太需要,除非涉及到数学公式,比如解释最小值的位置,但可能更多是代码示例。所以主要关注代码的正确格式行内表达式的正确使用。 总结步骤: 1. 介绍argmin的功能。 2. 参数说明:axis, keepdims。 3. 示例代码:一维、二维数组,不同轴的情况。 4. 注意事项,比如多个最小值的情况。 5. 生成相关问题。</think>### Numpy中argmin函数详解 `numpy.argmin`是用于获取数组中最小元素索引的函数,支持多维数组轴向操作。其核心功能可总结为以下数学表达式: $$ \text{argmin}(a) = \underset{i}{\operatorname{argmin}} \, a[i] $$ #### 参数说明 1. `a`:输入的NumPy数组 2. `axis`:轴向参数(默认None,返回展平数组的索引) 3. `keepdims`:是否保留维度(默认False) #### 基础用法演示 ```python import numpy as np # 一维数组示例 arr1 = np.array([3, 1, 4, 1, 5]) print(np.argmin(arr1)) # 输出:1 # 二维数组按不同轴计算 arr2 = np.array([[5, 2, 9], [3, 7, 1]]) print(np.argmin(arr2, axis=0)) # 输出:[1 0 1] print(np.argmin(arr2, axis=1)) # 输出:[1 2] ``` #### 高级参数应用 ```python # 保持维度演示 result = np.argmin(arr2, axis=1, keepdims=True) print(result.shape) # 输出:(2, 1) ``` #### 注意事项 当存在多个相同最小值时,返回第一个出现位置的索引: ```python arr3 = np.array([2, 1, 3, 1, 4]) print(np.argmin(arr3)) # 始终返回1 ``` 相关问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值