§8.3格的性质
8.3.1对偶原理
定义8.3.1.集合L中的部分序关系R与其逆关系R −1 ,称为互相对偶的两个关系。对任意x,y∈L,xR −1 y,yRx。
上节例8.2.4中的⇐关系即为蕴涵关系⇒逆关系.因此,对任意P,Q∈S,P⇐Q⟺Q⇒P。
结论8.3.1.若R是部分序关系,则R −1 也是部分序关系。
证明:因为对任意x∈L,xRx,因此有xR −1 x。故R −1 满足反身性。若xR −1 y,yR −1 x,则有yRx,xRy,因此,y=x.故R −1 满足反对称性。若xR −1 y,yR −1 z,则有yRx,zRy,因此,zRx,即xR −1 z。故R −1 满足传递性。
结论8.3.2(L,R)中sup{a,b}=d⟺(L,R −1 )中inf{a,b}=d,(L,R)中inf{a,b}=d⟺(L,R −1 )中sup{a,b}=d。
对于L的任意子集A,A在部分序集(L,R)中的最小上界就是A在部分序集(L,R −1 )中的最大下界,A在(L,R)中的最大下界就是A在(L,R −1 )中的最小上界。
结论8.3.3.如果部分序集(L,R)是格,则部分序集(L,R −1 )也是格,反之亦然。
设格(L,R)的最小元素是0,最大元素是1.
格(L,R)与格(L,R −1 )称为互相对偶的两个格。
定义8.3.2.格(L,R)中的表达式是由如下规则生成的符号串:1)0,1即变量X是表达式,X可以是L中任意元素,0,1分别是(L,R)中最小,最大元素。2)若A,B是表达式,则(A⊕B),(A×B)是表达式,其中×,⊕分别是格(L,R)中的最小上界和最大下界运算。3)格(L,R)中所有表达式,都是有限次使用1)∼2)生成的符号串。
定义8.3.3.设(L,R)是一个格。(L,R)中的最小上界和最大下界运算分别为⊕ 1 ,× 1 ;(L,R −1 )中的最小上界和最大下界运算分别为⊕ 2 ,× 2 ;E是格(L,R)中一个表达式。如果将E中⊕ 1 换成× 2 ,× 1 换成⊕ 2 ,将所得的格(L,R −1 )中表达式记为E ∗ ,则称E ∗ 为E在其对偶格中的对偶表达式。
定义8.3.4.设(L,R)是一个格,其中最小上界和最大下界运算分别为⊕,×,E是格(L,R)中的表达式。如果将E中的⊕换为×,×换为⊕,0换为1(当E中有0时),1换为0(当E中有1时),所得的表达式记为E ∗ ,则称E ∗ 为E之对偶表达式。
引理1.若XRY在格(L,R)中成立,则Y ∗ R −1 X ∗ 在对偶格(L,R −1 )中成立,其中X ∗ ,Y ∗ 分别是表达式X,Y的在对偶格中的对偶表达式。
证明:因为对任意a,b∈L,都有a⊕ 1 b=a× 2 b,a× 1 b=a⊕ 2 b.所以,将X,Y,X ∗ ,Y ∗ 中每个变量都以L中任意元素代替,得X 0 ,Y 0 ,X ∗ 0 ,Y ∗ 0 ,有X ∗ 0 =X 0 ,Y ∗ 0 =Y 0 故有X ∗ 0 RY ∗ 0 ,即有Y ∗ 0 R −1 X ∗ 0 .由于代入变量的元素的任意性,故有Y ∗ R −1 X ∗ 。
对偶原理1:若XRY在格(L,R)中成立,则Y ∗ RX ∗ 也在此格中成立,其中表达式X ∗ ,Y ∗ 分别是表达式X,Y的对偶表达式。
证明:因为XRY在(L,R)中成立,所以X ′ R −1 Y ′ 在(L,R −1 )中成立,其中X ′ ,Y ′ 分别是将X,Y中的⊕ 1 换为⊕ 2 ,× 1 换为× 2 ,0换为1(当X或Y中有0时),1换为0(当X或Y中有1时)所得之表达式。由引理1知,(Y ′ ) ∗ R(X ′ ) ∗ 在(L,R)中成立,其中(Y ′ ) ∗ ,(X ′ ) ∗ 分别是Y ′ ,X ′ 在其对偶格中的对偶表达式。由X ′ ,Y ′ ,(X ′ ) ∗ ,(Y ′ ) ∗ 的定义知:(X ′ ) ∗ =X ∗ ,(Y ′ ) ∗ =Y ∗ ,其中X ∗ ,Y ∗ 分别是X,Y的对偶表达式。故Y ∗ RX ∗ 在(L,R)中成立。
将格看作一种代数系统,我们知道这个代数的公理系统是对偶的。亦即,对于该系统的每一条公理,其对偶表达式组成的等式也是该系统的公理。所以,在格中利用公理推导出来的一切结论都应该是对偶的。也就是说,如果从格的公理H 1 ,⋯,H m 演绎出结论C,即C在格中成立,那么将此演绎的每一步中,凡使用公理H i (i=1,⋯,m)的地方,都换成对偶公理(i=1,⋯,m),于是演绎出的结论就是C的对偶关系C ∗ ,即C ∗ 在格中也成立。所谓C的对偶关系是指将C中的表达式换为对偶表达式,C中的关系换为对偶关系所得的关系式。
例如:在格中等幂律是成立的。a×a=a×(a⊕(a×a))=a对偶地可得:a⊕a=a⊕(a×(a⊕a))=a所以,如果在格L中,加入某一条件G,而能得出一个结论C,那么将G看作是格中一条新的公理,把G的对偶关系式G ∗ 也作为新公理加到格中,于是,C的对偶关系是C ∗ ,在格中,在条件G ∗ 下也应该成立。因此,下面的对偶原理是成立的。
对偶原理2:在格(L,R)中,若在条件HRG下,有XRY,则在对偶条件H ∗ R −1 G ∗ 下,有X ∗ R −1 Y ∗ 。其中H ∗ ,G ∗ ,X ∗ ,Y ∗ 分别是H,G,X,Y的对偶表达式。
8.3.2格的其它性质
定理8.3.1.设(L,≤)是一个格,a,b是L中任意元素,于是a≤b⟺a×b=a⟺a⊕b=b.
证明:若a≤b,因为a≤a,所以,a是{a,b}的下界,故a≤a×b.而a×b是{a,b}的最大下界,所以a×b≤a。故a×b=a.若a×b=a,由吸收律知a⊕b=(a×b)⊕b=b若a⊕b=b,由a⊕b的定义知,b是{a,b}的最小上界,当然有a≤b.
定理8.3.2.设(L,≤)是一个格,a,b,c是L中任意元素,如果b≤c,则有a×b≤a×c,a⊕b≤a⊕c.
证明:因为b≤c,所以由定理8.3.1.知b×c=b又因为(a×b)×(a×c)=(a×a)×(b×c)=a×(b×c)=a×b再由定理8.3.1知:a×b≤a×c。同理可证第二个不等式。
定理8.3.3.设(L,≤)是一个格,a,b,c是L中任意元素。于是有a⊕(b×c)≤(a⊕b)×(a⊕c),a×(b⊕c)≥(a×b)⊕(a×c).其中关系“≥”是关系“≤”的对偶关系。
证明:因为a≤a⊕b,a≤a⊕c,所以,由×的定义知a≤(a⊕b)×(a⊕c)(1)又因为b×c≤b≤a⊕bb×c≤c≤a⊕c所以,再由×的定义知b×c≤(a⊕b)×(a⊕c)(2)由⊕的定义及(1),(2)式知a⊕(b×c)≤(a⊕b)×(a⊕c)对偶地可证得另一不等式。
注意,在一般格中,分配律不是总成立的,但上述分配不等式总式成立的。
定理8.3.4.设(L,≤)是一个格,a,b,c是L中任意元素,于是,a≤b⟺a⊕(b×c)≤b×(a⊕c)
证明:若a≤b,则由定理8.3.1.知:a⊕b=b.由定理8.3.3知a⊕(b×c)≤(a⊕b)×(a⊕c)=b×(a⊕c)若a⊕(b×c)≤b×(a⊕c),则由⊕的定义知:a⊕(b×c)≥a由×的定义知b×(a⊕c)≤b故a≤b.
8.3.2格的同态与同构
定义8.3.5.设(L,×,⊕)和(S,∧,∨)是两个格,L到S内的映射g称为(L,×,⊕)到(S,∧,∨)的格同态映射,如果对任意a,b∈L,都有g(a×b)=g(a)∧g(b)g(a⊕b)=g(a)∨g(b)
格L到L内的同态映射称为格的自同态映射。若g是L到S上的同态映射,且是一对一的,则称g是格同构映射,并称格L与格S是同构的。
例8.3.1.设S={a,b},ρ(S)={ϕ,{a},{b},{a,b}}是S的幂集合,则(ρ(S),∩,∪)是一个格,设L={0,1},规定0≤1,∧,∨分别是集合L中两个元素在≤下的最大下界,最小上界运算,则(L,∧,∨)是一个格。规定映射g为:g({a})=1,g({a,b})=1,g({b})=0,g(ϕ)=0.则显然g是ρ(S)到L上的映射,往证g是同态映射。首先证对任意A,B∈ρ(S),g(A∩B)=g(A)∧g(B).
(1)若a∈A∩B,则a∈A,a∈B,故g(A∩B)=1,g(A)∧g(B)=1∧1=1.(2)若a∉A∩B,则g(A∩B)=0,
g(A)∧g(B)=⎧ ⎩ ⎨ ⎪ ⎪ 1∧0=0,a∈A,a∉B0∧1=0,a∉A,a∈B0∧0=0,a∉A,a∉B
综上,g(A∩B)=g(A)∩g(B).
再证对任意A,B∈ρ(S),g(A∪B)=g(A)∨g(B).
(1)若a∈A∪B,则g(A∪B)=1,
g(A)∨g(B)=⎧ ⎩ ⎨ ⎪ ⎪ 1∨0=1,a∈A,a∉B0∨1 1,a∉A,a∈B1∨1=1,a∈A,a∈B
(2)若a∉A∪B,则a∉A,a∉B,故g(A∪B)=0,g(A)∨g(B)=0∨0=0.综上,g(A∪B)=g(A)∨g(B).
因此,g是ρ(S)到L上的同态映射。
例8.3.2.设S={a,b},ρ(S)={ϕ,{a},{b},{a,b}}是S的幂集合,则(ρ(S),∩,∪)是一个格。规定映射g为:g(ϕ)=g({a})=ϕ,g({b})=g({a,b})={b}。显然,g为ρ(S)到ρ(S)内的映射。往证g是自同态映射。不难验证对任意A,B∈ρ(S),有:
若b∈A∪B,则g(A∪B)=g(A)∪g(B)={b};若b∉A∪B,则g(A∪B)=g(A)∪g(B)=ϕ.若b∈A∩B,则g(A∩B)=g(A)∩g(B)={b};若b∉A∩B,则g(A∩B)=g(A)∩g(B)=ϕ.因此,g(A∪B)=g(A)∪g(B),g(A∩B)=g(A)∩g(B).g为格(ρ(S),∩,∪)的自同态映射。
例8.3.3.设S={a,b,c},则ρ(S)={ϕ,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}}是S的幂集合,则(ρ(S),∩,∪)是一个格。设S 30 是30的所有正因数集合,×,⊕分别是求两个正整数的最高公因、最小公倍,则(S 30 ,×,⊕)是一个格。规定映射g为:ϕ→1,{a}→2,{b}→3,{c}→5,{a,b}→6,{a,c}→10,{b,c}→15,{a,b,c}→30.
则显然g为ρ(S)到S 30 上的1−1映射。不难验证对任意A,B∈ρ(S),有:g(A∪B)=g(A)⊕g(B),g(A∩B)=g(A)×g(B).因此,g为ρ(S)到S 30 上的同构映射。且g −1 是S 30 到ρ(S)上的同构映射,有:g −1 (g(x))=x,x∈ρ(S),g(g −1 (y))=y,y∈S 30 .
定理8.3.5.设(L,×,⊕)和(S,∧,∨)是两个格。集合L上对应于运算×,⊕的部分序为≤ L ,集合S上对应于运算∧,∨的部分序为≤ S .如果g是L到S内的同态映射,则g是保序映射,亦即,对任意a,b∈L,若a≤ L b,则g(a)≤ S g(b)。
证明:因为a≤b,a×b=a,所以g(a×b)=g(a),而g(a×b)=g(a)∧g(b)=g(a),故g(a)≤ S g(b).
定理8.3.6.设(L,×,⊕)是一个格,g是此格的自同态映射,于是g(L)是(L,×,⊕)的子格(定义B ′ ).
证明:任取g(L)中两个元素a ′ ,b ′ .于是a ′ ,b ′ 一定是L中某两个元素a,b在g下的映像。亦即,a ′ =g(a),b ′ =g(b),因为g是格(L,×,⊕)的自同态映射,所以a ′ ×b ′ =g(a)×g(b)=g(a×b)∈g(L),a ′ ⊕b ′ =g(a)⊕g(b)=g(a⊕b)∈g(L).即在运算×,⊕下,g(L)是封闭的。故(g(L),×,⊕)是(L,×,⊕)的子格。
定理8.3.7.设(L,×,⊕),(S,∧,∨)是两个格,若g是L到S上的同构映射,则g的逆映射g −1 是S到L上的同构映射。
证明:显然g −1 是S到L上的一对一映射。下面证明g −1 是S到L上的同态映射。任取a ′ ,b ′ ∈S,令g −1 (a ′ )=a,g −1 (b ′ )=b.于是g(a)=a ′ ,g(b)=b ′ .g −1 (a ′ ∧b ′ )=g −1 (g(a)∧g(b))=g −1 (g(a×b))=a×b=g −1 (a ′ )×g −1 (b ′ ).g −1 (a ′ ∨b ′ )=g −1 (g(1)∨g(b))=g −1 (g(a⊕b))=a⊕b=g −1 (a ′ )⊕g −1 (b ′ ).故g −1 是S到L上的同构映射。
推论:若格(L,×,⊕)和格(S,∧,∨)同构,g是其同构映射,则对L中任意两个元素a,b,有a≤ L b⟺g(a)≤ S g(b).其中≤ L ,≤ S 分别是集合L,S上对应于×,∧的部分序关系。
我们取L={0,1},规定0≤1.于是,(L,≤)是一个格,并且令(L,∧,∨)是与之等价的代数格,则∧,∨分别是集合L中两个元素的最大下界,最小上界运算。令L n ={(a 1 ,⋯,a n )|a i ∈L,i=1,⋯,n},规定:(a 1 ,⋯,a n )≤ n (b 1 ,⋯,b n )⟺a i ≤b i (i=1,⋯,n).于是,(L n ,≤ n )是一个格,通常称为n维格。令与(L n ,≤ n )等价的代数格为(L n ,×,⊕),对L n 中任意两个元素(a 1 ,⋯,a n ),(b 1 ,⋯,b n ),有(a 1 ,⋯,a n )×(b 1 ,⋯,b n )=(a 1 ∧b 1 ,⋯,a n ∧b n )(a 1 ,⋯,a n )⊕(b 1 ,⋯,b n )=(a 1 ∨b 1 ,⋯,a n ∨b n )。
例8.3.4.设S是含有n个元素的集合,ρ(S)是S的幂集合,于是,格(ρ(S),⊆)与格(L n ,≤ n )同构。
证:令S={s 1 ,⋯,s n }.令g是ρ(S)到L n 上的映射如下:任取A∈ρ(S),g(A)=(a 1 ,⋯,a n ),其中a i =1⟺s i ∈A,i=1,⋯,n.g是ρ(S)到L n 上的一对一映射。任取A,B∈ρ(S),令g(A)=(a 1 ,⋯,a n ),g(B)=(b 1 ,⋯,b n ),g(A∩B)=(c 1 ,⋯,c n ),由g的定义知:a i =1⟺s i ∈A,i=1,⋯,nb i =1⟺s i ∈B,i=1,⋯,nc i =1⟺s i ∈A∩B,i=1,⋯,n于是,c i =1⟺a i =1同时b i =1,i=1,⋯,n.因此,c i =a i ∧b i ,故(c i ,⋯,c n )=(a 1 ∧b 1 ,⋯,a n ∧b n )=(a 1 ,⋯,a n )×(b 1 ,⋯,b n )即,g(A∩B)=g(A)×g(B).同理可证得:g(A∪B)=g(A)⊕g(B).故(ρ(S),∩,∪)与(L n ,×,⊕)同构。