泛函分析基础9-内积空间2-1-投影定理7:投影定理【设Y是希尔伯特空间X的闭子空间,那么有X=Y+Y^⊥】

定义2

X X X 是内积空间, M M M X X X 的 子集,称集合

M ⊥ = { x ∈ X : x ⊥ M } M ^ { \perp } = \{ x \in X : x \perp M \} M={xX:xM}

M M M X X X 中的正交补

读者不难证明 M ⊥ M ^ { \perp } M X X X中的闭线性子空间.又由正交补的定义可知,若 M M M X X X 的线性子空间,则 M ∩ M ⊥ = { 0 } . M \cap M ^ { \perp } = \{ 0 \} . MM={0}.


X X X是希尔伯特空间时,我们有下面的投影定理

定理2

Y Y Y 是希尔伯特空间 X X X 的 闭子空间,那么有

X = Y + Y ⊥ . ( 6 ) X = Y + Y ^ { \perp } .\quad\quad(6) X=Y+Y.(6)

证明
因为 Y Y Y X X X 的闭子空间,所以 Y Y Y X X X 的完备子空间,由定理1的推论及引理1,对于任意 x ∈ X , x \in X , xX, 存在唯一 y ∈ Y y \in Y yY z ∈ Y ⊥ , z \in Y ^ { \perp } , zY,使

x = y + z , ( 7 ) x = y + z ,\quad\quad(7) x=y+z,(7)

又若另有 y 1 ∈ Y y _ { 1 } \in Y y1Y z 1 ∈ Y ⊥ , z _ { 1 } \in Y ^ { \perp } , z1Y, 使 x = y 1 + z 1 , x = y _ { 1 } + z _ { 1 } , x=y1+z1, y − y 1 = z 1 − z , y - y _ { 1 } = z _ { 1 } - z , yy1=z1z, y − y 1 ∈ Y , z 1 − z ∈ Y 1 , y - y _ { 1 } \in Y , z _ { 1 } - z \in Y ^ { 1 } , yy1Y,z1zY1, 于是 y 1 − y y _ { 1 } - y y1y = z 1 − z ∈ Y ∩ Y ⊥ = { 0 } , = z _ { 1 } - z \in Y \cap Y ^ { \perp } = \{ 0 \} , =z1zYY={0}, 因此, y = y 1 , z = z 1 , y = y _ { 1 } , z = z _ { 1 } , y=y1,z=z1, 这就证明了 X = Y + Y 1 . X = Y + Y ^ { 1 } . X=Y+Y1.

X = Y + Z , X = Y + Z , X=Y+Z, Y ⊥ Z Y \perp Z YZ 时,称 X X X Y Y Y Z Z Z 的 正交和,记为 X = Y ⊕ Z , X = Y \oplus Z , X=YZ, 因此(6)式可以写成

X = Y ⊕ Y 1 . ( 8 ) X = Y \oplus Y ^ { 1 } .\quad\quad(8) X=YY1.(8)

y ⊥ z , x = y + z , y \perp z , x = y + z , yz,x=y+z, 则写 x = y ⊕ z . x = y \oplus z . x=yz. 定理2告诉我们,当 Y Y Y 是希尔伯特空间 X X X 的闭子空间时,对每个 x ∈ X , x \in X , xX, 存在唯一 y ∈ Y y \in Y yY z ∈ Y 1 , z \in Y ^ { 1 } , zY1, 使得 x = y ⊕ z , x = y \oplus z , x=yz, y y y x x x 在 空间 Y Y Y 上的正交投影简称为投影.利用投影,可以定义 X X X Y Y Y 上 的映射 P P P 如下:对任意 x ∈ X , x \in X , xX,

P x = y , P x = y , Px=y,

其中 y y y x x x Y Y Y 上 的投影,称 P P P X X X Y Y Y上的投影算子读者不难证明,投影算子具有下列一系列性质.

  • 1 ∘ P 1 ^ { \circ } P 1P X X X Y Y Y 上 的有界线性算子,且当 Y ≠ { 0 } Y \neq \{ 0 \} Y={0}时, ∥ P ∥ = 1. \| P \| = 1 . P=1.
  • 2 ∘ P X = Y , P Y = Y , P Y ⊥ = { 0 } . 2 ^ { \circ } P X = Y , P Y = Y , P Y ^ { \perp } = \{ 0 \} . 2PX=Y,PY=Y,PY={0}.
  • 3 ∘ P 2 = P , 3 ^ { \circ } P ^ { 2 } = P , 3P2=P, 其中 P 2 = P P . P ^ { 2 } = P P . P2=PP.

X X X 是 内积空间, M M M X X X 的 子集,记 ( M ⊥ ) ⊥ = M ⊥ ⊥ , \left( M ^ { \perp } \right) ^ { \perp } = M ^ { \perp \perp } , (M)=M⊥⊥, 显然

M ⊂ M ⊥ ⊥ . ( 9 ) M \subset M ^ { \perp \perp } .\quad\quad(9) MM⊥⊥.(9)

反之,有下面的引理.

引理2

Y Y Y 是希尔伯特空间 X X X 的闭子空间,则有

Y = Y ⊥ ⊥ . ( 10 ) Y = Y ^ { \perp\perp } .\quad\quad(10) Y=Y⊥⊥.(10)

证明
由(9)式,只要证明 Y 1 − 1 ⊂ Y Y ^ { 1 - 1 } \subset Y Y11Y 即可.设 x ∈ Y 1 − 1 , x \in Y ^ { 1 - 1 } , xY11, 由投影定理,存在 y ∈ Y ⊂ y \in Y \subset yY Y 1 − 1 Y ^ { 1 - 1 } Y11 z ∈ Y ⊥ , z \in Y ^ { \perp } , zY, 使得 x = y ⊕ z . x = y \oplus z . x=yz. 因为 x ∈ Y 1 − 1 , x \in Y ^ { 1 - 1 } , xY11, 并且 Y 1 + 1 Y ^ { 1 + 1 } Y1+1 是线性空间,所以 x − y ∈ Y 1 − 1 , x - y \in Y ^ { 1 - 1 } , xyY11, 因此 z z z = x − y ∈ Y 1 ∩ Y 1 − 1 = { 0 } , = x - y \in Y ^ { 1 } \cap Y ^ { 1 - 1 } = \{ 0 \} , =xyY1Y11={0}, z = 0 , z = 0 , z=0, 所以 x = y ∈ Y . x = y \in Y . x=yY. 这就证明了 Y 1 − 1 ⊂ Y . Y ^ { 1 - 1 } \subset Y . Y11Y.

利用正交补,可以得到内积空间 X X X 中子集 M M M 的 线性包在 X X X中稠密的判断方法

引理3

M M M 是希尔伯特空间 X X X 中非空子集,则 M M M 的线性包 span ⁡ M \operatorname { s p a n } M spanM X X X 中稠密的充要条件为 M ⊥ = { 0 } . M ^ { \perp } = \{ 0 \} . M={0}.

证明
x ∈ M ⊥ , x \in M ^ { \perp } , xM, span ⁡ M \operatorname { s p a n } M spanM X X X中稠密,则 x ∈ span ⁡ M , x \in \operatorname { s p a n } M , xspanM, 因此,存在 x n ∈ span ⁡ M , n x _ { n } \in \operatorname { s p a n } M , n xnspanM,n = 1 , 2 , ⋯   , = 1 , 2 , \cdots , =1,2,, 使 x n → x ( n → ∞ ) , x _ { n } \rightarrow x ( n \rightarrow \infty ) , xnx(n), 又因 x ∈ M ⊥ , x \in M ^ { \perp } , xM, 所以 ⟨ x n , x ⟩ = 0 , n = 1 , 2 , ⋯   , \left\langle x _ { n } , x \right\rangle = 0 , n = 1 , 2 , \cdots , xn,x=0,n=1,2,,由内积连续性,得到 ⟨ x , x ⟩ = 0 , \langle x , x \rangle = 0 , x,x=0, 因而 x = 0 , x = 0 , x=0, M 1 = { 0 } . M ^ { 1 } = \{ 0 \} . M1={0}. 反之,设 M 1 = { 0 } , M ^ { 1 } = \{ 0 \} , M1={0}, 如果 x ⊥ span ⁡ M , x \perp \operatorname { s p a n } M , xspanM, x ⊥ M , x \perp M , xM, x ∈ M ⊥ , x \in M ^ { \perp } , xM, 所以 x = 0 , x = 0 , x=0, 因此 ( span ⁡ M ) ⊥ = { 0 } . ( \operatorname { s p a n } M ) ^ { \perp } = \{ 0 \} . (spanM)={0}. ( span ⁡ M ) ⊥ = ( span ⁡ M ) ⊥ , ( \operatorname { s p a n } M ) ^ { \perp } = ( \operatorname { s p a n } M ) ^ { \perp } , (spanM)=(spanM),由投影定理 X = X = X= spanM ⁡ , \operatorname { s p a n M } , spanM, span ⁡ M \operatorname { s p a n } M spanM X X X中稠密。

  • 5
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值